An end-to-end implementation of intent prediction with Metaflow and other cool tools

Overview

You Don't Need a Bigger Boat

An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn to do other stuff good too.

This is a WIP - check back often for updates.

Philosophical Motivations

There is plenty of tutorials and blog posts around the Internet on data pipelines and tooling. However:

  • they (for good pedagogical reasons) tend to focus on one tool / step at a time, leaving us to wonder how the rest of the pipeline works;
  • they (for good pedagogical reasons) tend to work in a toy-world fashion, leaving us to wonder what would happen when a real dataset and a real-world problem enter the scene.

This repository (and soon-to-be-drafted written tutorial) aims to fill these gaps. In particular:

  • we provide open-source working code that glues together what we believe are some of the best tools in the ecosystem, going all the way from raw data to a deployed endpoint serving predictions;
  • we run the pipeline under a realistic load for companies at "reasonable scale", leveraging a huge open dataset we released in 2021; moreover, we train a model for a real-world use case, and show how to monitor it after deployment.

The repo may also be seen as a (very opinionated) introduction to modern, PaaS-like pipelines; while there is obviously room for disagreement over tool X or tool Y, we believe the general principles to be sound for companies at "reasonable scale": in-between bare-bone infrastructure for Tech Giants, and ready-made solutions for low-code/simple scenarios, there is a world of exciting machine learning at scale for sophisticated practitioners who don't want to waste their time managing cloud resources.

Overview

The repo shows how several (mostly open-source) tools can be effectively combined together to run data pipelines. The project current features:

The following picture from our Recsys paper (forthcoming) gives a quick overview of such a pipeline:

Recsys flow

We provide two versions of the pipeline, depending on the sophistication of the setup:

  • a Metaflow-only version, which runs from static data files (see below) to Sagemaker as a single Flow, and can be run from a Metaflow-enabled laptop without much additional setup;
  • a data warehouse version, which runs in a more realistic setup, reading data from Snowflake and using an external orchestrator to run the steps. In this setup, the downside is that a Snowflake and a Prefect Cloud accounts are required (nonetheless, both are veasy to get); the upside is that the pipeline reflects almost perfectly a real setup, and Metaflow can be used specifically for the ML part of the process.

The parallelism between the two scenarios should be pretty clear by looking at the two projects: if you are familiarizing with all the tools for the first time, we suggest you to start from the Metaflow version and then move to the full-scale one when all the pieces of the puzzle are well understood.

Relevant Material

If you want to know more, you can give a look at the following material:

TBC

Status Update

July 2021

End-2-end flow working for remote and local projects; started standardizing Prefect agents with Docker and adding other services (monitoring, feature store etc.).

TO-DOs:

  • dockerize the local flow;
  • write-up all of this as a blog post;
  • improve code / readability / docs, add potentially some more pics and some videos;
  • providing an orchestrator-free version, by using step functions to manage the steps;
  • finish feature store and gantry integration;
  • add Github Action flow;
  • continue improving the DAG card project.

Setup

General Prerequisites (do this first!)

Irrespectively of the flow you wish to run, some general tools need to be in place: Metaflow of course, as the heart of our ML practice, but also data and AWS users/roles. Please go through the general items below before tackling the flow-specific instructions.

After you finish the prerequisites below, you can run the flow you desire: each folder - remote and local - contains a specific README which should allow you to quickly run the project end-to-end: please refer to that documentation for flow-specific instructions (check back often for updates).

Dataset

The project leverages the open dataset from the 2021 Coveo Data Challenge: the dataset can be downloaded directly from here (refer to the full README for terms and conditions). Data is freely available under a research-friendly license - for background information on the dataset, the use cases and relevant work in the ML literature, please refer to the accompanying paper.

Once you download and unzip the dataset in a local folder of your choice (the zip contains 3 files, browsing_train.csv, search_train.csv, sku_to_content.csv), write down their location as an absolute path (e.g. /Users/jacopo/Documents/data/train/browsing_train.csv): both projects need to know where the dataset is.

AWS

Both projects - remote and local - use AWS services extensively - and by design: this ties back to our philosophy of PaaS-whenever-possible, and play nicely with our core adoption of Metaflow. While you can setup your users in many functionally equivalent ways, note that if you want to run the pipeline from ingestion to serving you need to be comfortable with the following AWS interactions:

  • Metaflow stack (see below): we assume you installed the Metaflow stack and can run it with an AWS profile of your choice;
  • Serverless stack (see below): we assume you can run serverless deploy in your AWS stack;
  • Sagemaker user: we assume you have an AWS user with permissions to manage Sagemaker endpoints (it may be totally distinct from any other Metaflow user).

TBC

Serverless

We wrap Sagemaker predictions in a serverless REST endpoint provided by AWS Lambda and API Gateway. To manage the lambda stack we use Serverless as a wrapper around AWS infrastructure.

TBC

Metaflow

Metaflow: Configuration

If you have an AWS profile configured with a metaflow-friendly user, and you created metaflow stack with CloudFormation, you can run the following command with the resources created by CloudFormation to set up metaflow on AWS:

metaflow configure aws --profile metaflow

Remember to use METAFLOW_PROFILE=metaflow to use this profile when running a flow. Once you completed the setup, you can run flow_playground.py to test the AWS setup is working as expected (in particular, GPU batch jobs can run correctly). To run the flow with the custom profile created, you should do:

METAFLOW_PROFILE=metaflow python flow_playground.py run

Metaflow: Tips & Tricks
  1. Parallelism Safe Guard
    • The flag --max-workers should be used to limit the maximum number of parallel steps
    • For example METAFLOW_PROFILE=metaflow python flow_playground.py run --max-workers 8 limits the maximum number of parallel tasks to 8
  2. Environment Variables in AWS Batch
    • The @environment decorator is used in conjunction with @batch to pass environment variables to AWS Batch, which will not directly have access to env variables on your local machine
    • In the local example, we use @environemnt to pass the Weights & Biases API Key (amongst other things)
  3. Resuming Flows
    • Resuming flows is useful during development to avoid re-running compute/time intensive steps such as data preparation
    • METAFLOW_PROFILE=metaflow python flow_playground.py resume <STEP_NAME> --origin-run-id <RUN_ID>
  4. Local-Only execution
    • It may sometimes be useful to debug locally (i.e to avoid Batch startup latency), we introduce a wrapper enable_decorator around the @batch decorator which enables or disables a decorator's functionality
    • We use this in conjunction with an environment variable EN_BATCH to toggle the functionality of all @batch decorators.

FAQ

  1. Both projects deal with data that has already been ingested/transmitted to the pipeline, but are silent on data collection. Any serverless option there as well?

    Yes. In e-commerce use cases, for example, pixel tracking is standard (e.g. Google Analytics), so a serverless /collect endpoint can be used to get front-end data and drop it in a pure PaaS pipeline with Firehose and Snowpipe, for example. While a bit out-dated for some details, we championed exactly this approach a while ago: if you want to know more, you can start from this Medium post and old code.

TBC

How to Cite our Work

If you find our principles, code or data useful, please cite our work:

Paper (forthcoming in RecSys2021)

@inproceedings{10.1145/3460231.3474604,
author = {Tagliabue, Jacopo},
title = {You Do Not Need a Bigger Boat: Recommendations at Reasonable Scale in a (Mostly) Serverless and Open Stack},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3460231.3474604},
doi = {10.1145/3460231.3474604},
series = {RecSys '21}
}

Data

@inproceedings{CoveoSIGIR2021,
author = {Tagliabue, Jacopo and Greco, Ciro and Roy, Jean-Francis and Bianchi, Federico and Cassani, Giovanni and Yu, Bingqing and Chia, Patrick John},
title = {SIGIR 2021 E-Commerce Workshop Data Challenge},
year = {2021},
booktitle = {SIGIR eCom 2021}
}
Owner
Jacopo Tagliabue
I failed the Turing Test once, but that was many friends ago.
Jacopo Tagliabue
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022