A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

Overview

tfds-korean

A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다.

Dataset Catalog | pypi

PyPI - License PyPI Test Python

Usage

Installation

pip install tfds-korean

Loading dataset

import tensorflow_datasets as tfds
import tfds_korean.nsmc # register nsmc dataset

ds = tfds.load('nsmc')

train_ds = ds['train'].batch(32)
test_ds = ds['test'].batch(128)

# define model
# ....
# ....

model.fit(train_ds)
model.evaluate(test_ds)

See Dataset Catalog page for dataset list and details of each dataset.

Examples

Licenses

The license for this repository and licenses for datasets are applied separately. It is recommended to use each dataset after checking the dataset's website.

본 레포지토리의 라이선스와 데이터셋의 라이선스는 별도로 적용됩니다. 데이터셋을 사용하기 전 각 데이터셋의 라이선스와 웹 사이트를 확인 후 사용하시길 권해드리며, 본 라이브러리는 데이터셋을 호스팅하거나 배포하지 않는 점을 참고부탁드립니다.

Comments
  • [Dataset Request] sae4k

    [Dataset Request] sae4k

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): sae4k
    • Dataset description:
    • Homepage: https://github.com/warnikchow/sae4k
    • Citation:

    Additional Context

    dataset request 
    opened by jeongukjae 2
  • [Dataset Request] namuwiki corpus

    [Dataset Request] namuwiki corpus

    Dataset Information

    • Dataset Name: namuwiki corpus
    • Prefered code name(e.g. korean_chatbot_qa_data):
    • Dataset description:
    • Homepage: https://github.com/jeongukjae/namuwiki-corpus
    • Citation:
    • License:

    Additional Context

    문장 단위 분절해놓은 나무위키 코퍼스

    dataset request 
    opened by jeongukjae 1
  • [Dataset Request] korean wikipedia corpus

    [Dataset Request] korean wikipedia corpus

    Dataset Information

    • Dataset Name: 한국어 위키피디아 코퍼스
    • Prefered code name(e.g. korean_chatbot_qa_data): korean_wikipedia_corpus
    • Dataset description:
    • Homepage: https://github.com/jeongukjae/korean-wikipedia-corpus
    • Citation:
    • License:

    Additional Context

    kowikitext도 충분히 좋지만, 문장단위로 사용할 때 불편한 점이 있다. 그래서 문장단위로 이미 나누어진 말뭉치를 한국어 위키피디아 덤프에서 하나 생성. (kss로 분절)

    FeaturesDict({
        'content': Sequence(Text(shape=(), dtype=tf.string)),
        'title': Text(shape=(), dtype=tf.string),
    })
    

    요런식으로 content가 TensorSpec(shape=[None], dtype=tf.string)인 텐서값을 가지도록 만들어주면 distillation이나 문장 단위 unsupervised learning이나 할 때 편할 것 같아요.

    dataset request before-release 
    opened by jeongukjae 1
  • [Dataset Request] KLUE

    [Dataset Request] KLUE

    Dataset Information

    • Dataset Name: KLUE
    • Prefered code name(e.g. korean_chatbot_qa_data): klue_dp, klue_mrc, ...
    • Dataset description:
    • Homepage:
    • Citation:
    • License:

    Additional Context

    https://github.com/KLUE-benchmark/KLUE https://arxiv.org/pdf/2105.09680v1.pdf

    • [x] dp @jeongukjae
    • [x] mrc @harrydrippin
    • [x] ner @jeongukjae
    • [x] nli @jeongukjae
    • [x] re @jeongukjae
    • [x] sts @jeongukjae
    • [x] wos @jeongukjae
    • [x] ynat @jeongukjae
    dataset request before-release 
    opened by jeongukjae 1
  • [Dataset Request] namuwikitext

    [Dataset Request] namuwikitext

    Dataset Information

    • Dataset Name: Wikitext format dataset of Namuwiki
    • Prefered code name(e.g. korean_chatbot_qa_data): namuwikitext
    • Dataset description: 나무위키의 덤프 데이터를 바탕을 제작한 wikitext 형식의 텍스트 파일입니다. 학습 및 평가를 위하여 위키페이지 별로 train (99%), dev (0.5%), test (0.5%) 로 나뉘어져있습니다.
    • Homepage: https://github.com/lovit/namuwikitext
    • Citation:

    Additional Context

    https://github.com/lovit/namuwikitext/issues/10

    README에 있는 데이터셋 개수와 맞지 않아 이렇게 이슈 작성을 해놓았는데, 답변은 없는 상황임. 일단 Korpora에 있는 대로 추가해놓고 나중에 다시 수정하는 것이 좋지 않을까

    dataset request 
    opened by jeongukjae 1
  • [Dataset Request] KorQuAD

    [Dataset Request] KorQuAD

    Dataset Information

    • Dataset Name: KorQuAD 1.0
    • Prefered code name(e.g. korean_chatbot_qa_data): korquad_10
    • Dataset description: KorQuAD 1.0은 한국어 Machine Reading Comprehension을 위해 만든 데이터셋입니다. 모든 질의에 대한 답변은 해당 Wikipedia article 문단의 일부 하위 영역으로 이루어집니다. Stanford Question Answering Dataset(SQuAD) v1.0과 동일한 방식으로 구성되었습니다.
    • Homepage: https://korquad.github.io/KorQuad%201.0/
    • Citation:

    Dataset Information

    • Dataset Name: KorQuAD 2.0
    • Prefered code name(e.g. korean_chatbot_qa_data): korquad_20
    • Dataset description: KorQuAD 2.0은 KorQuAD 1.0에서 질문답변 20,000+ 쌍을 포함하여 총 100,000+ 쌍으로 구성된 한국어 Machine Reading Comprehension 데이터셋 입니다. KorQuAD 1.0과는 다르게 1~2 문단이 아닌 Wikipedia article 전체에서 답을 찾아야 합니다. 매우 긴 문서들이 있기 때문에 탐색 시간에 대한 고려가 필요할 것 입니다. 또한 표와 리스트도 포함되어 있기 때문에 HTML tag를 통한 문서의 구조 이해도 필요합니다. 이 데이터셋을 통해서 다양한 형태와 길이의 문서들에서도 기계독해가 가능해질 것 입니다.
    • Homepage: https://korquad.github.io
    • Citation:

    Additional Context

    일단은 KorQuAD 1.0만 추가해놓고 2.0은 추후에 추가해도 무방할 듯

    dataset request before-release 
    opened by jeongukjae 1
  • [Dataset Request] 한국해양대학교 NER 데이터셋

    [Dataset Request] 한국해양대학교 NER 데이터셋

    Dataset Information

    • Dataset Name: 한국해양대학교 자연언어처리 연구실 NER 데이터셋
    • Prefered code name(e.g. korean_chatbot_qa_data): kmounlp_ner
    • Dataset description: 한국어 개체명 정의 및 표지 표준화 기술보고서와 이를 기반으로 제작된 개체명 형태소 말뭉치
    • Homepage: https://github.com/kmounlp/NER
    • Citation:

    Additional Context

    보고서: https://github.com/kmounlp/NER/blob/master/NER%20Guideline%20(ver%201.0).pdf

    dataset request 
    opened by jeongukjae 1
  • Add CONTRIBUTING.md

    Add CONTRIBUTING.md

    • [ ] 프로젝트에서 사용하는 언어에 대한 설명. 사용법/데이터셋 설명은 가능하면 영어로 적되, 이슈/PR 소통은 한국어로 하는게 좋지 않을까?
    • [ ] 데이터셋 추가하는 법
    • [ ] 이슈/PR/Discussion 간단한 설명
    • [ ] 추가로 같이 관리하고 싶은 분들에 대한 설명
    • [ ] 데이터셋 라이선스에 대한 문제에 대한 설명
    documentation before-release 
    opened by jeongukjae 1
  • 현재 wikitext의 문제점을 카탈로그에 적어두기

    현재 wikitext의 문제점을 카탈로그에 적어두기

    https://github.com/jeongukjae/tfds-korean/issues/12#issuecomment-826358469

    위와 같은 이유로 "필터를 해서 사용해라" 혹은 "중간에 빈 example이 있다" 정도는 적어두는 편이 좋은 듯

    documentation 
    opened by jeongukjae 0
  • [Dataset Request] sci-news-sum-kr-50

    [Dataset Request] sci-news-sum-kr-50

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): sci_news_sum_kr_50
    • Dataset description:
    • Homepage: https://github.com/theeluwin/sci-news-sum-kr-50
    • Citation:

    Additional Context

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] kowikitext

    [Dataset Request] kowikitext

    Dataset Information

    • Dataset Name: 한국어 wikitext
    • Prefered code name(e.g. korean_chatbot_qa_data): kowikitext
    • Dataset description: Wikitext format Korean corpus
    • Homepage: https://github.com/lovit/kowikitext
    • Citation:

    Additional Context

    이것도 #12 와 같은 문제점이 존재하는 것으로 보이는데, 일단은 Korpora 방식을 따라감. 이 데이터셋도 heading을 기준으로 split할 경우 = 분류~~~ =같은 행들이 존재하여 정확히 문서 단위로 복구가 불가능함.

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] korean_unsmile_dataset

    [Dataset Request] korean_unsmile_dataset

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data):
    • Dataset description:
    • Homepage: https://github.com/smilegate-ai/korean_unsmile_dataset
    • Citation:
    • License:

    Additional Context

    dataset request 
    opened by jeongukjae 0
  • 데이터셋 카탈로그 빌더 특정 데이터셋 스킵가능하게 수정

    데이터셋 카탈로그 빌더 특정 데이터셋 스킵가능하게 수정

    현재 모든 데이터셋이 로컬에 존재해야 카탈로그를 빌드할 수 있는데, 이게 너무 부담이 된다. 현재 develop 기준만 해도 대략 30GB를 로컬에 들고 있어야 한다.

    데이터셋 버전이 바뀌지 않는다면 카탈로그를 다시 빌드해야하는 때는 build_catalog.py 스크립트가 변경될 때 뿐이라서 특정 데이터셋 페이지 & index 페이지만 빌드해도 되도록 수정해두자. 물론 전체 데이터셋에 대한 카탈로그 빌드도 가능하게 유지.

    documentation 
    opened by jeongukjae 0
  • [Dataset Request] Korean Single Speaker Speech Dataset

    [Dataset Request] Korean Single Speaker Speech Dataset

    Dataset Information

    • Dataset Name: Korean Single Speaker Speech Dataset
    • Prefered code name(e.g. korean_chatbot_qa_data):
    • Dataset description:
    • Homepage: https://www.kaggle.com/bryanpark/korean-single-speaker-speech-dataset
    • Citation:
    • License:

    Additional Context

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] 세종코퍼스

    [Dataset Request] 세종코퍼스

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): sejong_corpus
    • Dataset description:
    • Homepage: https://ithub.korean.go.kr/user/total/database/corpusManager.do
    • Citation:
    • License:

    Additional Context

    세종 코퍼스: https://ithub.korean.go.kr/user/total/database/corpusManager.do 세종 코퍼스 - 병렬: https://ithub.korean.go.kr/user/total/database/etcManager.do

    라이선스가 상업적 이용이 어렵더라도 이용하기에 좋은 말뭉치라 생각해서 일단은 추가하는 게 좋을 것 같아요.

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] kcbert

    [Dataset Request] kcbert

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): kcbert
    • Dataset description:
    • Homepage: https://github.com/Beomi/KcBERT
    • Citation:

    Additional Context

    이거 추가해두면 엄청 유용하게 쓸 수 있을 것 같다!!

    dataset request 
    opened by jeongukjae 4
  • [Dataset Request] KAIST Corpus

    [Dataset Request] KAIST Corpus

    Dataset Information

    • Dataset Name: kaist corpus
    • Prefered code name(e.g. korean_chatbot_qa_data): kaist_corpus
    • Dataset description:
    • Homepage: http://semanticweb.kaist.ac.kr/home/index.php/KAIST_Corpus
    • Citation:

    Additional Context

    wontfix dataset request 
    opened by jeongukjae 1
Releases(0.4.0)
  • 0.4.0(Sep 19, 2021)

    • Update KLUE dataset to 1.1.0 https://github.com/jeongukjae/tfds-korean/commit/e954ec4550ec5db015d3f93750e6763aca5a9b48
    • Reorder ClassLabel names of NLI datasets. https://github.com/jeongukjae/tfds-korean/commit/be3e8cba7b9d537969b9c08738dd6df36b0145bc
    Source code(tar.gz)
    Source code(zip)
  • 0.3.0(Jun 16, 2021)

    • add korean_wikipedia_corpus (https://jeongukjae.github.io/tfds-korean/datasets/korean_wikipedia_corpus.html)
    • add namuwiki_corpus (https://jeongukjae.github.io/tfds-korean/datasets/namuwiki_corpus.html)
    Source code(tar.gz)
    Source code(zip)
  • 0.2.0(Jun 6, 2021)

    • add KLUE benchmark datasets
    • update dataset catalog (https://github.com/jeongukjae/tfds-korean/commit/eb1c72d0a716aba7326276e77e8e6f94976bb579, https://github.com/jeongukjae/tfds-korean/commit/614616b82d0bbdaecbc4ec50e0cfc67b78b646c2)
    • fix klue_ner supervised key bug (https://github.com/jeongukjae/tfds-korean/commit/10f765f01b9f3952e298395779dcf8efeefde93a)
    Source code(tar.gz)
    Source code(zip)
  • 0.1.3(May 29, 2021)

  • 0.1.2(May 25, 2021)

  • 0.1.1(Apr 30, 2021)

  • 0.1.0(Apr 29, 2021)

    • Add kowikitext and namuwikitext dataset
    • Add missing licenses and bibtex.
    • Add license section in catalog page.
    • Add example links in catalog page.
    Source code(tar.gz)
    Source code(zip)
Owner
Jeong Ukjae
Machine Learning Engineer
Jeong Ukjae
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning

GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning GrammarTagger is an open-source toolkit for grammatical profiling for lan

Octanove Labs 27 Jan 05, 2023
Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

2 Dec 29, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

ETS 49 Sep 12, 2022
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
Ask for weather information like a human

weather-nlp About Ask for weather information like a human. Goals Understand typical questions like: Hourly temperatures in Potsdam on 2020-09-15. Rai

5 Oct 29, 2022
Turkish Stop Words Türkçe Dolgu Sözcükleri

trstop Turkish Stop Words Türkçe Dolgu Sözcükleri In this repository I put Turkish stop words that is contained in the first 10 thousand words with th

Ahmet Aksoy 103 Nov 12, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

Facebook Research 4.3k Jan 01, 2023
A python gui program to generate reddit text to speech videos from the id of any post.

Reddit text to speech generator A python gui program to generate reddit text to speech videos from the id of any post. Current functionality Generate

Aadvik 17 Dec 19, 2022