Official Pytorch Code for the paper TransWeather

Overview

TransWeather

Official Code for the paper TransWeather, Arxiv Tech Report 2021

Paper | Website

About this repo:

This repo hosts the implentation code, pre-trained weights, and dataset preparation details for the paper "TransWeather". We also provide code for a strong transformer baseline for weather removal tasks.

Introduction

Removing adverse weather conditions like rain, fog, and snow from images is an important problem in many applications. Most methods proposed in the literature have been designed to deal with just removing one type of degradation. Recently, a CNN-based method using neural architecture search (All-in-One) was proposed to remove all the weather conditions at once. However, it has a large number of parameters as it uses multiple encoders to cater to each weather removal task and still has scope for improvement in its performance. In this work, we focus on developing an efficient solution for the all adverse weather removal problem. To this end, we propose TransWeather, a transformer-based end-to-end model with just a single encoder and a decoder that can restore an image degraded by any weather condition. Specifically, we utilize a novel transformer encoder using intra-patch transformer blocks to enhance attention inside the patches to effectively remove smaller weather degradations. We also introduce a transformer decoder with learnable weather type embeddings to adjust to the weather degradation at hand. TransWeather achieves significant improvements across multiple test datasets over both All-in-One network as well as methods fine-tuned for specific tasks. In particular, TransWeather pushes the current state-of-the-art by +6.34 PSNR on the Test1 (rain+fog) dataset, +4.93 PSNR on the SnowTest100K-L dataset and +3.11 PSNR on the RainDrop test dataset. TransWeather is also validated on real world test images and found to be more effective than previous methods.

Using the code:

The code is stable while using Python 3.6.13, CUDA >=10.1

  • Clone this repository:
git clone https://github.com/jeya-maria-jose/TransWeather
cd TransWeather

To install all the dependencies using conda:

conda env create -f environment.yml
conda activate transweather

If you prefer pip, install following versions:

timm==0.3.2
mmcv-full==1.2.7
torch==1.7.1
torchvision==0.8.2
opencv-python==4.5.1.48

Datasets:

Train Data:

TransWeather is trained on a combination of images sampled from Outdoor-Rain, Snow100K, and Raindrop datasets (similar to All-in-One (CVPR 2020)), dubbed as "All-Weather", containing 18069 images. It can be downloaded from this link.

Test Data:

RainDrop Test : Link (Note that Test A is used for quantitative evaluation across all papers in the community, Test B is used for additional qualitative analysis)

Snow100K Test : Link (We use the Snow100K-L distribution for testing)

Test1 (validation set of "Outdoor-Rain") : Link

Real World Images : Link

Dataset format:

Download the datasets and arrange them in the following format. T

    TransWeather
    ├── data 
    |   ├── train # Training  
    |   |   ├── 
   
       
    |   |   |   ├── input         # rain images 
    |   |   |   └── gt            # clean images
    |   |   └── dataset_filename.txt
    |   └── test  # Testing         
    |   |   ├── 
    
               
    |   |   |   ├── input         # rain images 
    |   |   |   └── gt            # clean images
    |   |   └── dataset_filename.txt

    
   

Text Files:

Link

Pre-Trained Model

TransWeather Weights - Link

Place the folder in the root directory.

Evaluation Code:

To run the evaluation for specific test datasets, run the following commands:

python test_snow100k.py -exp_name TransWeather_weights
python test_test1.py -exp_name TransWeather_weights
python test_raindropa.py -exp_name TransWeather_weights

These scripts will calculate the performance metrics as well as save the predictions in the results folder.

Training the network:

To train the network on All-weather dataset, run the following command:

python train.py  -train_batch_size 32 -exp_name Transweather -epoch_start 0 -num_epochs 250

Extensions:

Note that Transweather is built to solve all adverse weather problem with a single model. We observe that, additionally TransWeather can be easilty modified (removing the transformer decoder) to just focus on a individual weather restoration task. To train just the Transweather-encoder on other datasets (like Rain-800), organize the dataset similar to all-weather and run the following command:

python train-individual.py  -train_batch_size 32 -exp_name Transweather-finetune -epoch_start 0 -num_epochs 250

Change train-individual.py with the necesarry details of the data to be trained on. Note that the network used there is a sub-section of our original Transweather architecture without the weather queries.

Acknowledgements:

This code-base uses certain code-blocks and helper functions from Syn2Real, Segformer, and ViT.

Citation:

Owner
Jeya Maria Jose
PhD Student at Johns Hopkins University.
Jeya Maria Jose
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023