Python data loader for Solar Orbiter's (SolO) Energetic Particle Detector (EPD).

Overview

solo-epd-loader

Python data loader for Solar Orbiter's (SolO) Energetic Particle Detector (EPD). Provides level 2 (l2) and low latency (ll) data obtained through CDF files from ESA's Solar Orbiter Archive (SOAR) for the following sensors:

  • Electron Proton Telescope (EPT)
  • High Energy Telescope (HET)
  • SupraThermal Electrons and Protons (STEP)

Installation

solo_epd_loader requires python >= 3.6, and it depends on cdflib and heliopy (which will be automatically installed). It can be installed from PyPI using:

pip install solo-epd-loader

Usage

The standard usecase is to utilize the epd_load function, which returns Pandas dataframe(s) of the EPD measurements and a dictionary containing information on the energy channels.

from solo_epd_loader import epd_load

df_1, df_2, energies = \
    epd_load(sensor, viewing, level, startdate, enddate, path, autodownload)

Input

  • sensor: ept, het, or step (string)
  • viewing: sun, asun, north, or south (string); not needed for sensor = step
  • level: ll or l2 (string)
  • startdate, enddate: YYYYMMDD, e.g., 20210415 (integer) (if no enddate is provided, enddate = startdate will be used)
  • path: directory in which Solar Orbiter data is/should be organized; e.g. /home/userxyz/solo/data/ (string)
  • autodownload: if True will try to download missing data files from SOAR (bolean)

Return

  • For sensor = ept or het:
    1. Pandas dataframe with proton fluxes and errors (for EPT also alpha particles) in ‘particles / (s cm^2 sr MeV)’
    2. Pandas dataframe with electron fluxes and errors in ‘particles / (s cm^2 sr MeV)’
    3. Dictionary with energy information for all particles:
      • String with energy channel info
      • Value of lower energy bin edge in MeV
      • Value of energy bin width in MeV
  • For sensor = step:
    1. Pandas dataframe with fluxes and errors in ‘particles / (s cm^2 sr MeV)’
    2. Dictionary with energy information for all particles:
      • String with energy channel info
      • Value of lower energy bin edge in MeV
      • Value of energy bin width in MeV

Data folder structure

The path variable provided to the module should be the base directory where the corresponding cdf data files should be placed in subdirectories. First subfolder defines the data product level (l2 or low_latency at the moment), the next one the instrument (so far only epd), and finally the sensor (ept, het or step).

For example, the folder structure could look like this: /home/userxyz/solo/data/l2/epd/het. In this case, you should call the loader with path=/home/userxyz/solo/data; i.e., the base directory for the data.

You can use the (automatic) download function described in the following section to let the subfolders be created initially automatically. NB: It might be that you need to run the code with sudo or admin privileges in order to be able to create new folders on your system.

Data download within Python

While using epd_load() to obtain the data, one can choose to automatically download missing data files from SOAR directly from within python. They are saved in the folder provided by the path argument (see above). For that, just add autodownload=True to the function call:

from solo_epd_loader import epd_load

df_protons, df_electrons, energies = \
    epd_load(sensor='het', viewing='sun', level='l2',
             startdate=20200820, enddate=20200821, \
             path='/home/userxyz/solo/data/', autodownload=True)

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Note: The code will always download the latest version of the file available at SOAR. So in case a file V01.cdf is already locally present, V02.cdf will be downloaded nonetheless.

Example 1 - low latency data

Example code that loads low latency (ll) electron and proton (+alphas) fluxes (and errors) for EPT NORTH telescope from Apr 15 2021 to Apr 16 2021 into two Pandas dataframes (one for protons & alphas, one for electrons). In general available are ‘sun’, ‘asun’, ‘north’, and ‘south’ viewing directions for ‘ept’ and ‘het’ telescopes of SolO/EPD.

from solo_epd_loader import *

df_protons, df_electrons, energies = \
    epd_load(sensor='ept', viewing='north', level='ll',
             startdate=20210415, enddate=20210416, \
             path='/home/userxyz/solo/data/')

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Example 2 - level 2 data

Example code that loads level 2 (l2) electron and proton (+alphas) fluxes (and errors) for HET SUN telescope from Aug 20 2020 to Aug 20 2020 into two Pandas dataframes (one for protons & alphas, one for electrons).

from solo_epd_loader import epd_load

df_protons, df_electrons, energies = \
    epd_load(sensor='het', viewing='sun', level='l2',
             startdate=20200820, enddate=20200821, \
             path='/home/userxyz/solo/data/')

# plot protons and alphas
ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

# plot electrons
ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60))
plt.show()

Example 3 - reproducing EPT data from Fig. 2 in Gómez-Herrero et al. 2021 [1]

from solo_epd_loader import epd_load

# set your local path here
lpath = '/home/userxyz/solo/data'

# load data
df_protons, df_electrons, energies = \
    epd_load(sensor='ept', viewing='sun', level='l2', startdate=20200708,
             enddate=20200724, path=lpath, autodownload=True)

# change time resolution to get smoother curve (resample with mean)
resample = '60min'

fig, axs = plt.subplots(2, sharex=True)
fig.suptitle('EPT Sun')

# plot selection of channels
for channel in [0, 8, 16, 26]:
    df_electrons['Electron_Flux'][f'Electron_Flux_{channel}']\
        .resample(resample).mean().plot(ax = axs[0], logy=True,
        label=energies["Electron_Bins_Text"][channel][0])
for channel in [6, 22, 32, 48]:
    df_protons['Ion_Flux'][f'Ion_Flux_{channel}']\
        .resample(resample).mean().plot(ax = axs[1], logy=True,
        label=energies["Ion_Bins_Text"][channel][0])

axs[0].set_ylim([0.3, 4e6])
axs[1].set_ylim([0.01, 5e8])

axs[0].set_ylabel("Electron flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
axs[1].set_ylabel("Ion flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
axs[0].legend()
axs[1].legend()
plt.subplots_adjust(hspace=0)
plt.show()

NB: This is just an approximate reproduction with different energy channels (smaller, not combined) and different time resolution! Figure

Example 4 - reproducing EPT data from Fig. 2 in Wimmer-Schweingruber et al. 2021 [2]

from solo_epd_loader import epd_load
import datetime

# set your local path here
lpath = '/home/userxyz/solo/data'

# load data
df_protons_sun, df_electrons_sun, energies = \
    epd_load(sensor='ept', viewing='sun', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_asun, df_electrons_asun, energies = \
    epd_load(sensor='ept', viewing='asun', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_south, df_electrons_south, energies = \
    epd_load(sensor='ept', viewing='south', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)
df_protons_north, df_electrons_north, energies = \
    epd_load(sensor='ept', viewing='north', level='l2',
             startdate=20201210, enddate=20201211,
             path=lpath, autodownload=True)

# plot mean intensities of two energy channels; 'channel' defines the lower one
channel = 6
ax = pd.concat([df_electrons_sun['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_sun['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='sun', color='#d62728')
ax = pd.concat([df_electrons_asun['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_asun['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='asun', color='#ff7f0e')
ax = pd.concat([df_electrons_north['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_north['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='north', color='#1f77b4')
ax = pd.concat([df_electrons_south['Electron_Flux'][f'Electron_Flux_{channel}'],
                df_electrons_south['Electron_Flux'][f'Electron_Flux_{channel+1}']],
                axis=1).mean(axis=1).plot(logy=True, label='south', color='#2ca02c')

plt.xlim([datetime.datetime(2020, 12, 10, 23, 0),
          datetime.datetime(2020, 12, 11, 12, 0)])

ax.set_ylabel("Electron flux\n"+r"(cm$^2$ sr s MeV)$^{-1}$")
plt.title('EPT electrons ('+str(energies['Electron_Bins_Low_Energy'][channel])
          + '-' + str(energies['Electron_Bins_Low_Energy'][channel+2])+' MeV)')
plt.legend()
plt.show()

NB: This is just an approximate reproduction; e.g., the channel combination is a over-simplified approximation! image1

References

[1] First near-relativistic solar electron events observed by EPD onboard Solar Orbiter, Gómez-Herrero et al., A&A, 656 (2021) L3, https://doi.org/10.1051/0004-6361/202039883
[2] First year of energetic particle measurements in the inner heliosphere with Solar Orbiter’s Energetic Particle Detector, Wimmer-Schweingruber et al., A&A, 656 (2021) A22, https://doi.org/10.1051/0004-6361/202140940

License

This project is Copyright (c) Jan Gieseler and licensed under the terms of the BSD 3-clause license. This package is based upon the Openastronomy packaging guide which is licensed under the BSD 3-clause licence. See the licenses folder for more information.

Comments
  • Environment variable for path

    Environment variable for path

    Would it be possible to use (optionally) an environment variable for the path (preferably the same for all loaders)? That would make it much easier for multi-user environments to have data in one location only. Granted, it would possibly also need some file permission changing as well...

    enhancement 
    opened by tlml 12
  • Replacing FILLVALUES not working with pandas 1.5.0

    Replacing FILLVALUES not working with pandas 1.5.0

    At least until pandas 1.4.4 the replacement of FILLVAUES done by the following code worked: https://github.com/jgieseler/solo-epd-loader/blob/f92e4e995a273d5755792c3f02e4ea3c33cfc675/solo_epd_loader/init.py#L754-L761

    But since pandas 1.5.0 it doesn't work anymore, and the values of -1e+31 are not replaced with np.nan's.

    I don't know the reason, maybe it has to do with the fact that the corresponding DataFrames have a MultiIndex.

    bug 
    opened by jgieseler 1
  • Catch error that python doesn't have rights to create folders

    Catch error that python doesn't have rights to create folders

    Data for the different detectors are downloaded in subdirectories of the data directory provided by path. Under some circumstances, the script doesn't have the necessary rights to create these folders if they don't already exist. Then a FileNotFoundError: [Errno 2] No such file or directory: {path+subdir+file} is raised.

    Catch this problem and/or provide a meaningful warning message.

    bug 
    opened by jgieseler 1
  • Change from heliopy's cdf2lib to sunpy's read_cdf

    Change from heliopy's cdf2lib to sunpy's read_cdf

    Change the function to read cdf files from heliopy's cdf2lib() to sunpy's read_cdf() in _read_epd_cdf(); i.e., applies to EPT and HET data, not STEP data. The latter is read in manually using cdflib

    opened by jgieseler 0
  • Make downloading of all viewings optional

    Make downloading of all viewings optional

    SolO/EPD/EPT has for viewing directions; each delivered in a separate data file. Right now, all viewing files are downloaded for a requested day, even so the call to solo-epd-loader specifically asks for a single viewing direction and only returns that data. This has been included in the beginning because usually we have been interested in having all viewing-direction files anyhow. But it makes sense to have this at least as an option, so that you can deactivate this behaviour in case you want to only have e.g. the 'sun' viewing direction.

    enhancement 
    opened by jgieseler 0
  • Include resampling functionality

    Include resampling functionality

    Include resampling functionality like https://github.com/serpentine-h2020/SEPpy/blob/bc2e3e0662a019147d25bd554edbceaf7328e25b/seppy/loader/stereo.py#L24-L38

    enhancement 
    opened by jgieseler 0
  • Clean install_requires in setup.cfg

    Clean install_requires in setup.cfg

    With https://github.com/jgieseler/solo-epd-loader/commit/8fede59ac7a529cb1189f1ac40ddf20755b5cdaf bz4 and datetime have been added to the install_requires in setup.cfg (in the progress of establishing some testing), but this is not liked by the conda-forge version, which complains when bz4 and datetime are listed as requirements in the meta.yaml file. This needs to be sorted out.

    Until then, pip check has been removed from meta.yaml, cf. https://github.com/jgieseler/solo-epd-loader-feedstock/commit/9d9eda523e1690fc1d520bca4a4a40eba521b6be

    opened by jgieseler 0
  • Set level='l2' as default

    Set level='l2' as default

    Right now, level is a required positional argument. Set this by default to 'l2' because this should be the standard data product one should use if in doubt.

    opened by jgieseler 0
  • Add calc_av_en_flux_EPD()

    Add calc_av_en_flux_EPD()

    Add function that averages the flux of several energy channels into a combined energy channel. In principle already available here, but needs to be corectly integrated.

    enhancement 
    opened by jgieseler 1
  • Use sunpy_soar for downloading data from SOAR

    Use sunpy_soar for downloading data from SOAR

    sunpy_soar supports since v1.4 also low latency data. So it now is able to obtain all the same data we're downloading until now with solo_epd_loader (the source is in both cases ESA's SOAR). For the future, it would be worthwhile to completely move the downloading process to sunpy_soar to avoid duplication (and sunpy_soar is definitely much better written than my code 😅).

    enhancement 
    opened by jgieseler 1
Releases(v0.1.11)
Owner
Jan Gieseler
Jan Gieseler
A random cat fact python module

A random cat fact python module

Fayas Noushad 4 Nov 28, 2021
A set of tools for ripping music from Konami mobile games

Konami Mobile Ripping Toolset A set of tools for ripping music from Konami mobile games Contents nigger.py for niggering konami's website, ripping all

5 Oct 20, 2022
A notebook explaining the principle of adversarial attacks and their defences

TL;DR: A notebook explaining the principle of adversarial attacks and their defences Abstract: Deep neural networks models have been wildly successful

1 Jan 22, 2022
A ULauncher/Albert extension that supports currency, units and date time conversion, as well as a calculator that supports complex numbers and functions.

Ulauncher/Albert Calculate Anything Ulauncher/Albert Calculate Anything is an extension for Ulauncher and Albert to calculate things like currency, ti

tchar 67 Jan 01, 2023
India Today Astrology App

India Today Astrology App Introduction This repository contains the code for the Backend setup of the India Today Astrology app as a part of their rec

Pranjal Pratap Dubey 4 May 07, 2022
Neptune client library - integrate your Python scripts with Neptune

Lightweight experiment tracking tool for AI/ML individuals and teams. Fits any workflow. Neptune is a lightweight experiment logging/tracking tool tha

neptune.ai 353 Jan 04, 2023
Multifunctional Analysis of Regions through Input-Output

MARIO Multifunctional Analysis of Regions through Input-Output. (Documents) What is it MARIO is a python package for handling input-output tables and

14 Dec 25, 2022
a simple functional programming language compiler written in python

Functional Programming Language A compiler for my small functional language. Written in python with SLY lexer/parser generator library. Requirements p

Ashkan Laei 3 Nov 05, 2021
Python Service for MISP Feed Management

Python Service for MISP Feed Management This set of scripts is designed to offer better reliability and more control over the fetching of feeds into M

Chris 7 Aug 24, 2022
YunoHost is an operating system aiming to simplify as much as possible the administration of a server.

YunoHost is an operating system aiming to simplify as much as possible the administration of a server. This repository corresponds to the core code, written mostly in Python and Bash.

YunoHost 1.5k Jan 09, 2023
京东自动入会获取京豆

京东入会领京豆 要求 有一定的电脑知识 or 有耐心爱折腾 需要Chrome(推荐)、Edge(Chromium)、Firefox 操作系统需是Mac(本人没在m1上测试)、Linux(在deepin上测试过)、Windows 安装方法 脚本采用Selenium遍历京东入会有礼界面,由于遍历了200

Vanke Anton 500 Dec 22, 2022
An advanced pencil sketch generator

Pencilate An advanced pencil sketch generator About : An advanced pencil sketch maker made in just 12 lines of code. Yes you read it right, JUST 12 LI

MAINAK CHAUDHURI 23 Dec 17, 2022
qecsim is a Python 3 package for simulating quantum error correction using stabilizer codes.

qecsim qecsim is a Python 3 package for simulating quantum error correction using stabilizer codes.

44 Dec 20, 2022
MobaXterm-GenKey

MobaXterm-GenKey 你懂的!! 本地启动 需要安装Python3!!!

malaohu 328 Dec 29, 2022
Apache Airflow - A platform to programmatically author, schedule, and monitor workflows

Apache Airflow Apache Airflow (or simply Airflow) is a platform to programmatically author, schedule, and monitor workflows. When workflows are define

The Apache Software Foundation 28.6k Dec 28, 2022
Graphene Metanode is a locally hosted node for one account and several trading pairs, which uses minimal RAM resources.

Graphene Metanode is a locally hosted node for one account and several trading pairs, which uses minimal RAM resources. It provides the necessary user stream data and order book data for trading in a

litepresence 5 May 08, 2022
Back-end API for the reternal framework

RE:TERNAL RE:TERNAL is a centralised purple team simulation platform. Reternal uses agents installed on a simulation network to execute various known

Joey Dreijer 7 Apr 15, 2022
This repository contains each day of Advent of Code 2021 that I've done.

Advent of Code - 2021 I will use this repository as my Advent of Code1 (AoC) repo for the 2021 challenge. I'm changing how I am tackling the problems

Brett Chapin 2 Jan 12, 2022
Python Project For Beginner

Basic-Vitrual-AI-Assistant Python Project For Beginner Hey There, I had manipulated Selenium WebDriver to make this assistant. I hope, It will be help

Maruf Billah 13 Dec 12, 2022
String Spy is a project aimed at improving MacOS defenses.

String Spy is a project aimed at improving MacOS defenses. It allows users to constantly monitor all running processes for user-defined strings, and if it detects a process with such a string it will

10 Dec 13, 2022