Xeasy-ml is a packaged machine learning framework.

Overview

xeasy-ml

1. What is xeasy-ml

Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use the model to process and analyze his own data. At the same time, we have also realized the automatic analysis of data. During data processing, xeasy-ml will automatically draw data box plots, distribution histograms, etc., and perform feature correlation analysis to help users quickly discover the value of data.

2.Installation

Dependencies

xeasy-ml requires:

Scikit-learn >= 0.24.1

Pandas >= 0.24.2

Numppy >= 1.19.5

Matplotlib >= 3.3.4

Pydotplus >= 2.0.2

Xgboost >= 1.4.2

User installation

pip install xeasy-ml

3. Quick Start

1.Create a new project

Create a new python file named pro_init.py to initialize the project.

from xeasy_ml.project_init.create_new_demo import create_project
import os

pro_path = os.getcwd()
create_project(pro_path)

Now you can see the following file structure in your project.

├── Your_project
     ...
│   ├── pro_init.py
│   ├── project
│   │   └── your_project

2.Run example

cd project/your_project

python __main__.py

3.View Results

cd project/your_project_name/result/v1
ls -l
├── box   (Box plot)
├── cross_predict.txt (Cross-validation prediction file)
├── cross.txt  (Cross validation effect evaluation)
├── deleted_feature.txt  (Features that need to be deleted)
├── demo_feature_weight.txt  (Feature weights)
├── demo.m   (Model)
├── feature_with_feature  (Feature similarity)
├── feature_with_label   (Similarity between feature and label )
├── hist    (Distribution histogram)
├── model
├── predict_result.txt  (Test set prediction results)
└── test_score.txt      (Score on the test set)


xeasy-ml中文文档

1. 简介

​ xeasy-ml是一个封装的机器学习框架。它允许初学者快速建立机器学习模型,并使用该模型处理和分析自己的数据。同时,还实现了数据的自动分析。在数据处理过程中,xeasy-ml会自动绘制数据的箱线图、分布直方图等,并进行特征相关性分析,帮助用户快速发现数据的价值。

2.安装

依赖包:

Scikit-learn >= 0.24.1
Pandas >= 0.24.2
Numppy >= 1.19.5
Matplotlib >= 3.3.4
Pydotplus >= 2.0.2
Xgboost >= 1.4.2

​ 安装:

pip install xeasy-ml

3.如何使用

1.创建自己的项目

#创建一个名为pro_init.py的新python文件来初始化项目。
from xeasy_ml.project_init.create_new_demo import create_project
import os
pro_path = os.getcwd()
create_project(pro_path)
#在pro_init.py同级目录下可以看到以下目录结构:
├── Your_project
 	 ...
	├── pro_init.py
	├── project
	│  └── your_project

2.运行

cd project/your_project
python __main__.py

3.查看结果

cd project/your_project_name/result/v1
ls -l

  ├── box  (箱线图)

  ├── cross_predict.txt (交叉验证预测文件)

  ├── cross.txt (交叉验证评估)

  ├── deleted_feature.txt (需要被删除的特征)

  ├── demo_feature_weight.txt (模型特征权重)

  ├── demo.m  (保存的模型文件)

  ├── feature_with_feature (特征相似度)

  ├── feature_with_label  (特征与标签相似度)

  ├── hist  (分布直方图)

  ├── model

  ├── predict_result.txt (测试集预测结果)

  └── test_score.txt   (测试集评价指标得分)

4.线上使用手册

​ 假设你已经按照3.1的指引生成了你的个人项目文件夹,文件的目录结构为:

|———— Your_project
 	 ...
	| |———— pro_init.py
	| |———— project
	| |	└──your_project
	| |	   └──config
	| |	      └──demo
	| |		 └──ml.conf
	| |		 └──model.conf
	| |		 ...
	| |	      |——log.conf
	| |	   |——data
	| |	      └──sample.txt
	| |        |——log
	| |        |——result
	| |        |——__main__.py									

1.训练

​ 上述project结构中,config文件夹下为模型配置文件和日志配置文件;data为训练集;log是训练过程储存日志的文件夹,你可以在这里查看你的模型运行日志;result用于储存模型运行过程产生的数据分析资料,模型文件等;

​ 训练时,你可以根据自己的任务对配置文件进行调整,数据需存放在data文件夹下;模型训练和预测的结果在result内;加入你已经完成了模型的训练过程,你最需要关注的是result下的变化,其中最重要的是model文件下的demo.m,这是模型训练后的储存文件。

|——result
   |——v1
      |——box
      |——hist
      |——model

2.工程预测

​ 线上使用xeasy-ml时,你需要准备三个文件:demo.m , log.conf 和feature_enginnering.conf;在完成训练步骤后,你可以在project文件夹下找到它们;将这三个文件放在你的工程目录下,接着你需要做的就是写出你自己的predict.py(或者调用xeasy-ml.predict()方法,传入上述三个参数),这个文件包括xeasy-ml中的prediction_ml.PredictionML类用以初始化模型,PredictionML(config=conf, xeasy_log_path = xeasy_log_path)有两个参数:config是用于模型初始化的文件,easy_log_path是模型的日志配置文件;这里有个要注意的地方是我们可以根据自己的需要决定是否传入模型的配置文件(训练中的ml.conf)文件的作用是根据配置信息初始化模型(包括数据处理等),如果执行这一步操作,你需要在与启动文件相同目录下添加’./config/demo/model.conf‘和'’./config/demo/feature_enginnering.conf‘';需要注意的是ml.conf和model.conf的参数调整

self.ml = xml.prediction_ml.PredictionML(config = 'your ml.conf path', xeasy_log_path=xeasy_log_path)

如果只是使用XGBClassifier模型,不需要传入模型初始化文件,也不需要额外建立’./config/demo/model.conf‘文件目录;仅传入日志配置文件即可,但是需要自定义数据处理,代码形式如下:

self.ml = xml.prediction_ml.PredictionML(xeasy_log_path=xeasy_log_path)
self.ml._model = XGBClassifier()
self.ml._model.load_model(model_path)

self.ml._feature_processor = xml.data_processor.DataProcessor(conf=ml_config, log_path=xeasy_log_path)
self.ml._feature_processor.init()

以上步骤是线上模型的两种初始化方式;初始化后,对预测数据进行预测前需要进行数据处理,例:

self.ml._feature_processor.test_data = data_frame
self.ml._feature_processor.execute()
# 测试数据
test_feature = self.ml._feature_processor.test_data_feature.astype("float64", errors='ignore')
# 预测结果
predict_res = self.ml._model.predict(test_feature)
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
[DEPRECATED] Tensorflow wrapper for DataFrames on Apache Spark

TensorFrames (Deprecated) Note: TensorFrames is deprecated. You can use pandas UDF instead. Experimental TensorFlow binding for Scala and Apache Spark

Databricks 757 Dec 31, 2022
This repository contains the code to predict house price using Linear Regression Method

House-Price-Prediction-Using-Linear-Regression The dataset I used for this personal project is from Kaggle uploaded by aariyan panchal. Link of Datase

0 Jan 28, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022