🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Overview

Conditional Motion In-Betweening (CMIB)

Official implementation of paper: Conditional Motion In-betweeening.

Paper(arXiv) | Project Page | YouTube

Graphical Abstract

in-betweening pose-conditioned
walk jump dance

Environments

This repo is tested on following environment:

  • Ubuntu 20.04
  • Python >= 3.7
  • PyTorch == 1.10.1
  • Cuda V11.3.109

Install

  1. Follow LAFAN1 dataset's installation guide. You need to install git lfs first before cloning the dataset repo.

  2. Run LAFAN1's evaluate.py to unzip and validate it. (Install numpy first if you don't have it)

    $ pip install numpy
    $ python ubisoft-laforge-animation-dataset/evaluate.py 

    With this, you will have unpacked LAFAN dataset under ubisoft-laforge-animation-dataset folder.

  3. Install appropriate pytorch version depending on your device(CPU/GPU), then install packages listed in requirements.txt. .

Trained Weights

You can download trained weights from here.

Train from Scratch

Trining script is trainer.py.

python trainer.py \
	--processed_data_dir="processed_data_80/" \
	--window=90 \
	--batch_size=32 \
	--epochs=5000 \
	--device=0 \
	--entity=cmib_exp \
	--exp_name="cmib_80" \
	--save_interval=50 \
	--learning_rate=0.0001 \
	--loss_cond_weight=1.5 \
	--loss_pos_weight=0.05 \
	--loss_rot_weight=2.0 \
	--from_idx=9 \
	--target_idx=88 \
	--interpolation='slerp'

Inference

You can use run_cmib.py for inference. Please refer to help page of run_cmib.py for more details.

python run_cmib.py --help

Reference

  • LAFAN1 Dataset
    @article{harvey2020robust,
    author    = {Félix G. Harvey and Mike Yurick and Derek Nowrouzezahrai and Christopher Pal},
    title     = {Robust Motion In-Betweening},
    booktitle = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH)},
    publisher = {ACM}, 
    volume    = {39},
    number    = {4},
    year      = {2020}
    }
    

Citation

@misc{kim2022conditional,
      title={Conditional Motion In-betweening}, 
      author={Jihoon Kim and Taehyun Byun and Seungyoun Shin and Jungdam Won and Sungjoon Choi},
      year={2022},
      eprint={2202.04307},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Author

Comments
  • shaking for start and  target when I training my self dataset?

    shaking for start and target when I training my self dataset?

    when I trained myself data for 175epoch , I found the result sequence joint with start and target will suddenly shake. I wan't to know , How can reduce this phenomenon?

    opened by miaoYuanyuan 12
  • Benchmark models show different l2p,l2q from the paper

    Benchmark models show different l2p,l2q from the paper

    I download the benchmark models from the site, and test it on lanfan dataset. But the l2p and l2q are diffrent from the paper. I wonder if something wrong with my setting. Or, the benchmark models are not the best setting trained models.

    opened by holyhao 4
  • Question how is the performance in regards to hand/finger movement and facial expressions?

    Question how is the performance in regards to hand/finger movement and facial expressions?

    I was wondering if the method also works on "finer" detail movement in regards to the smaller body parts as hands and facial expressions.

    Cool work ;)

    opened by AIMads 2
  • Use linear probed discriminator

    Use linear probed discriminator

    Current unrolled state does not handle sequential data, which may lead to fail capture modality. Consider using the last cell state as a motion descriptor and discriminator input.

    opened by jihoonerd 2
  • where I can find corresponding code about Motion data augmentation?

    where I can find corresponding code about Motion data augmentation?

    Based on my own understand, there are 3 parts process about traing.

    1. Randomized Shuffled Anchor Pose: corresponding to the random mask_start_frame.
    2. Semantic Embedding: in the network Sturcture, cond_embedding
    3. motion data augmentation? I can't find the corresponding code?
    opened by miaoYuanyuan 1
  • Some questions about the input of network

    Some questions about the input of network

    The input of transformer model is [seq_len, batch_size, embedding_dim] instead of [batch_size, seq_len, embedding_dim], what‘s the purpose of this design?

    opened by icech 1
  • Current test.py does not support continuous code

    Current test.py does not support continuous code

    Continuous codes are uniformly distributed in the range of [-1,1]. We need a test code to confirm varying continuous code similar as how we do in discrete code case.

    opened by jihoonerd 1
  • Bump pillow from 8.1.2 to 8.2.0

    Bump pillow from 8.1.2 to 8.2.0

    Bumps pillow from 8.1.2 to 8.2.0.

    Release notes

    Sourced from pillow's releases.

    8.2.0

    https://pillow.readthedocs.io/en/stable/releasenotes/8.2.0.html

    Changes

    Dependencies

    Deprecations

    ... (truncated)

    Changelog

    Sourced from pillow's changelog.

    8.2.0 (2021-04-01)

    • Added getxmp() method #5144 [UrielMaD, radarhere]

    • Add ImageShow support for GraphicsMagick #5349 [latosha-maltba, radarhere]

    • Do not load transparent pixels from subsequent GIF frames #5333 [zewt, radarhere]

    • Use LZW encoding when saving GIF images #5291 [raygard]

    • Set all transparent colors to be equal in quantize() #5282 [radarhere]

    • Allow PixelAccess to use Python int when parsing x and y #5206 [radarhere]

    • Removed Image._MODEINFO #5316 [radarhere]

    • Add preserve_tone option to autocontrast #5350 [elejke, radarhere]

    • Fixed linear_gradient and radial_gradient I and F modes #5274 [radarhere]

    • Add support for reading TIFFs with PlanarConfiguration=2 #5364 [kkopachev, wiredfool, nulano]

    • Deprecated categories #5351 [radarhere]

    • Do not premultiply alpha when resizing with Image.NEAREST resampling #5304 [nulano]

    • Dynamically link FriBiDi instead of Raqm #5062 [nulano]

    • Allow fewer PNG palette entries than the bit depth maximum when saving #5330 [radarhere]

    • Use duration from info dictionary when saving WebP #5338 [radarhere]

    • Stop flattening EXIF IFD into getexif() #4947 [radarhere, kkopachev]

    ... (truncated)

    Commits
    • e0e353c 8.2.0 version bump
    • ee635be Merge pull request #5377 from hugovk/security-and-release-notes
    • 694c84f Fix typo [ci skip]
    • 8febdad Review, typos and lint
    • fea4196 Reorder, roughly alphabetic
    • 496245a Fix BLP DOS -- CVE-2021-28678
    • 22e9bee Fix DOS in PSDImagePlugin -- CVE-2021-28675
    • ba65f0b Fix Memory DOS in ImageFont
    • bb6c11f Fix FLI DOS -- CVE-2021-28676
    • 5a5e6db Fix EPS DOS on _open -- CVE-2021-28677
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump pillow from 8.0.1 to 8.2.0 in /wandb/run-20210721_164106-3rr1e9j2/files

    Bump pillow from 8.0.1 to 8.2.0 in /wandb/run-20210721_164106-3rr1e9j2/files

    ⚠️ Dependabot is rebasing this PR ⚠️

    Rebasing might not happen immediately, so don't worry if this takes some time.

    Note: if you make any changes to this PR yourself, they will take precedence over the rebase.


    Bumps pillow from 8.0.1 to 8.2.0.

    Release notes

    Sourced from pillow's releases.

    8.2.0

    https://pillow.readthedocs.io/en/stable/releasenotes/8.2.0.html

    Changes

    Dependencies

    Deprecations

    ... (truncated)

    Changelog

    Sourced from pillow's changelog.

    8.2.0 (2021-04-01)

    • Added getxmp() method #5144 [UrielMaD, radarhere]

    • Add ImageShow support for GraphicsMagick #5349 [latosha-maltba, radarhere]

    • Do not load transparent pixels from subsequent GIF frames #5333 [zewt, radarhere]

    • Use LZW encoding when saving GIF images #5291 [raygard]

    • Set all transparent colors to be equal in quantize() #5282 [radarhere]

    • Allow PixelAccess to use Python int when parsing x and y #5206 [radarhere]

    • Removed Image._MODEINFO #5316 [radarhere]

    • Add preserve_tone option to autocontrast #5350 [elejke, radarhere]

    • Fixed linear_gradient and radial_gradient I and F modes #5274 [radarhere]

    • Add support for reading TIFFs with PlanarConfiguration=2 #5364 [kkopachev, wiredfool, nulano]

    • Deprecated categories #5351 [radarhere]

    • Do not premultiply alpha when resizing with Image.NEAREST resampling #5304 [nulano]

    • Dynamically link FriBiDi instead of Raqm #5062 [nulano]

    • Allow fewer PNG palette entries than the bit depth maximum when saving #5330 [radarhere]

    • Use duration from info dictionary when saving WebP #5338 [radarhere]

    • Stop flattening EXIF IFD into getexif() #4947 [radarhere, kkopachev]

    ... (truncated)

    Commits
    • e0e353c 8.2.0 version bump
    • ee635be Merge pull request #5377 from hugovk/security-and-release-notes
    • 694c84f Fix typo [ci skip]
    • 8febdad Review, typos and lint
    • fea4196 Reorder, roughly alphabetic
    • 496245a Fix BLP DOS -- CVE-2021-28678
    • 22e9bee Fix DOS in PSDImagePlugin -- CVE-2021-28675
    • ba65f0b Fix Memory DOS in ImageFont
    • bb6c11f Fix FLI DOS -- CVE-2021-28676
    • 5a5e6db Fix EPS DOS on _open -- CVE-2021-28677
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump urllib3 from 1.24.1 to 1.26.5 in /wandb/run-20210721_164106-3rr1e9j2/files

    Bump urllib3 from 1.24.1 to 1.26.5 in /wandb/run-20210721_164106-3rr1e9j2/files

    ⚠️ Dependabot is rebasing this PR ⚠️

    Rebasing might not happen immediately, so don't worry if this takes some time.

    Note: if you make any changes to this PR yourself, they will take precedence over the rebase.


    Bumps urllib3 from 1.24.1 to 1.26.5.

    Release notes

    Sourced from urllib3's releases.

    1.26.5

    :warning: IMPORTANT: urllib3 v2.0 will drop support for Python 2: Read more in the v2.0 Roadmap

    • Fixed deprecation warnings emitted in Python 3.10.
    • Updated vendored six library to 1.16.0.
    • Improved performance of URL parser when splitting the authority component.

    If you or your organization rely on urllib3 consider supporting us via GitHub Sponsors

    1.26.4

    :warning: IMPORTANT: urllib3 v2.0 will drop support for Python 2: Read more in the v2.0 Roadmap

    • Changed behavior of the default SSLContext when connecting to HTTPS proxy during HTTPS requests. The default SSLContext now sets check_hostname=True.

    If you or your organization rely on urllib3 consider supporting us via GitHub Sponsors

    1.26.3

    :warning: IMPORTANT: urllib3 v2.0 will drop support for Python 2: Read more in the v2.0 Roadmap

    • Fixed bytes and string comparison issue with headers (Pull #2141)

    • Changed ProxySchemeUnknown error message to be more actionable if the user supplies a proxy URL without a scheme (Pull #2107)

    If you or your organization rely on urllib3 consider supporting us via GitHub Sponsors

    1.26.2

    :warning: IMPORTANT: urllib3 v2.0 will drop support for Python 2: Read more in the v2.0 Roadmap

    • Fixed an issue where wrap_socket and CERT_REQUIRED wouldn't be imported properly on Python 2.7.8 and earlier (Pull #2052)

    1.26.1

    :warning: IMPORTANT: urllib3 v2.0 will drop support for Python 2: Read more in the v2.0 Roadmap

    • Fixed an issue where two User-Agent headers would be sent if a User-Agent header key is passed as bytes (Pull #2047)

    1.26.0

    :warning: IMPORTANT: urllib3 v2.0 will drop support for Python 2: Read more in the v2.0 Roadmap

    • Added support for HTTPS proxies contacting HTTPS servers (Pull #1923, Pull #1806)

    • Deprecated negotiating TLSv1 and TLSv1.1 by default. Users that still wish to use TLS earlier than 1.2 without a deprecation warning should opt-in explicitly by setting ssl_version=ssl.PROTOCOL_TLSv1_1 (Pull #2002) Starting in urllib3 v2.0: Connections that receive a DeprecationWarning will fail

    • Deprecated Retry options Retry.DEFAULT_METHOD_WHITELIST, Retry.DEFAULT_REDIRECT_HEADERS_BLACKLIST and Retry(method_whitelist=...) in favor of Retry.DEFAULT_ALLOWED_METHODS, Retry.DEFAULT_REMOVE_HEADERS_ON_REDIRECT, and Retry(allowed_methods=...) (Pull #2000) Starting in urllib3 v2.0: Deprecated options will be removed

    ... (truncated)

    Changelog

    Sourced from urllib3's changelog.

    1.26.5 (2021-05-26)

    • Fixed deprecation warnings emitted in Python 3.10.
    • Updated vendored six library to 1.16.0.
    • Improved performance of URL parser when splitting the authority component.

    1.26.4 (2021-03-15)

    • Changed behavior of the default SSLContext when connecting to HTTPS proxy during HTTPS requests. The default SSLContext now sets check_hostname=True.

    1.26.3 (2021-01-26)

    • Fixed bytes and string comparison issue with headers (Pull #2141)

    • Changed ProxySchemeUnknown error message to be more actionable if the user supplies a proxy URL without a scheme. (Pull #2107)

    1.26.2 (2020-11-12)

    • Fixed an issue where wrap_socket and CERT_REQUIRED wouldn't be imported properly on Python 2.7.8 and earlier (Pull #2052)

    1.26.1 (2020-11-11)

    • Fixed an issue where two User-Agent headers would be sent if a User-Agent header key is passed as bytes (Pull #2047)

    1.26.0 (2020-11-10)

    • NOTE: urllib3 v2.0 will drop support for Python 2. Read more in the v2.0 Roadmap <https://urllib3.readthedocs.io/en/latest/v2-roadmap.html>_.

    • Added support for HTTPS proxies contacting HTTPS servers (Pull #1923, Pull #1806)

    • Deprecated negotiating TLSv1 and TLSv1.1 by default. Users that still wish to use TLS earlier than 1.2 without a deprecation warning

    ... (truncated)

    Commits
    • d161647 Release 1.26.5
    • 2d4a3fe Improve performance of sub-authority splitting in URL
    • 2698537 Update vendored six to 1.16.0
    • 07bed79 Fix deprecation warnings for Python 3.10 ssl module
    • d725a9b Add Python 3.10 to GitHub Actions
    • 339ad34 Use pytest==6.2.4 on Python 3.10+
    • f271c9c Apply latest Black formatting
    • 1884878 [1.26] Properly proxy EOF on the SSLTransport test suite
    • a891304 Release 1.26.4
    • 8d65ea1 Merge pull request from GHSA-5phf-pp7p-vc2r
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump tensorflow-gpu from 1.15.3 to 2.4.2 in /wandb/run-20210721_164106-3rr1e9j2/files

    Bump tensorflow-gpu from 1.15.3 to 2.4.2 in /wandb/run-20210721_164106-3rr1e9j2/files

    ⚠️ Dependabot is rebasing this PR ⚠️

    Rebasing might not happen immediately, so don't worry if this takes some time.

    Note: if you make any changes to this PR yourself, they will take precedence over the rebase.


    Bumps tensorflow-gpu from 1.15.3 to 2.4.2.

    Release notes

    Sourced from tensorflow-gpu's releases.

    TensorFlow 2.4.2

    Release 2.4.2

    This release introduces several vulnerability fixes:

    ... (truncated)

    Changelog

    Sourced from tensorflow-gpu's changelog.

    Release 2.4.2

    This release introduces several vulnerability fixes:

    • Fixes a heap buffer overflow in RaggedBinCount (CVE-2021-29512)
    • Fixes a heap out of bounds write in RaggedBinCount (CVE-2021-29514)
    • Fixes a type confusion during tensor casts which leads to dereferencing null pointers (CVE-2021-29513)
    • Fixes a reference binding to null pointer in MatrixDiag* ops (CVE-2021-29515)
    • Fixes a null pointer dereference via invalid Ragged Tensors (CVE-2021-29516)
    • Fixes a division by zero in Conv3D (CVE-2021-29517)
    • Fixes vulnerabilities where session operations in eager mode lead to null pointer dereferences (CVE-2021-29518)
    • Fixes a CHECK-fail in SparseCross caused by type confusion (CVE-2021-29519)
    • Fixes a segfault in SparseCountSparseOutput (CVE-2021-29521)
    • Fixes a heap buffer overflow in Conv3DBackprop* (CVE-2021-29520)
    • Fixes a division by 0 in Conv3DBackprop* (CVE-2021-29522)
    • Fixes a CHECK-fail in AddManySparseToTensorsMap (CVE-2021-29523)
    • Fixes a division by 0 in Conv2DBackpropFilter (CVE-2021-29524)
    • Fixes a division by 0 in Conv2DBackpropInput (CVE-2021-29525)
    • Fixes a division by 0 in Conv2D (CVE-2021-29526)
    • Fixes a division by 0 in QuantizedConv2D (CVE-2021-29527)
    • Fixes a division by 0 in QuantizedMul (CVE-2021-29528)
    • Fixes vulnerabilities caused by invalid validation in SparseMatrixSparseCholesky (CVE-2021-29530)
    • Fixes a heap buffer overflow caused by rounding (CVE-2021-29529)
    • Fixes a CHECK-fail in tf.raw_ops.EncodePng (CVE-2021-29531)
    • Fixes a heap out of bounds read in RaggedCross (CVE-2021-29532)
    • Fixes a CHECK-fail in DrawBoundingBoxes

    ... (truncated)

    Commits
    • 1923123 Merge pull request #50210 from tensorflow/geetachavan1-patch-1
    • a0c8093 Update BUILD
    • f1c8200 Merge pull request #50203 from tensorflow/mihaimaruseac-patch-1
    • 7cf45b5 Update common.sh
    • 4aaac2b Merge pull request #50185 from geetachavan1/cherrypicks_U90C1
    • 65afa4b Fix the nightly nonpip builds for MacOS.
    • 46c1821 Merge pull request #50184 from tensorflow/mihaimaruseac-patch-1
    • cf8d667 Update common_win.bat
    • b2ef8a6 Merge pull request #50061 from tensorflow/geetachavan1-patch-2
    • f9a1ba8 Update sparse_fill_empty_rows_op.cc
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
Releases(v1.0)
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023