A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

Overview

🌟 HNSW + PostgreSQL Indexer

HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework.

It combines the reliability of PostgreSQL with the speed and efficiency of the HNSWlib nearest neighbor library.

It thus provides all the CRUD operations expected of a database system, while also offering fast and reliable vector lookup.

Requires a running PostgreSQL database service. For quick testing, you can run a containerized version locally with:

docker run -e POSTGRES_PASSWORD=123456 -p 127.0.0.1:5432:5432/tcp postgres:13.2

Syncing between PSQL and HNSW

By default, all data is stored in a PSQL database (as defined in the arguments). In order to add data to / build a HNSW index with your data, you need to manually call the /sync endpoint. This iterates through the data you have stored, and adds it to the HNSW index. By default, this is done incrementally, on top of whatever data the HNSW index already has. If you want to completely rebuild the index, use the parameter rebuild, like so:

flow.post(on='/sync', parameters={'rebuild': True})

At start-up time, the data from PSQL is synced into HNSW automatically. You can disable this with:

Flow().add(
    uses='jinahub://HNSWPostgresIndexer',
    uses_with={'startup_sync': False}
)

Automatic background syncing

WARNING: Experimental feature

Optionally, you can enable the option for automatic background syncing of the data into HNSW. This creates a thread in the background of the main operations, that will regularly perform the synchronization. This can be done with the sync_interval constructor argument, like so:

Flow().add(
    uses='jinahub://HNSWPostgresIndexer',
    uses_with={'sync_interval': 5}
)

sync_interval argument accepts an integer that represents the amount of seconds to wait between synchronization attempts. This should be adjusted based on your specific data amounts. For the duration of the background sync, the HNSW index will be locked to avoid invalid state, so searching will be queued. When sync_interval is enabled, the index will also be locked during search mode, so that syncing will be queued.

CRUD operations

You can perform all the usual operations on the respective endpoints

  • /index. Add new data to PostgreSQL
  • /search. Query the HNSW index with your Documents.
  • /update. Update documents in PostgreSQL
  • /delete. Delete documents in PostgreSQL.

Note. This only performs soft-deletion by default. This is done in order to not break the look-up of the document id after doing a search. For a hard delete, add 'soft_delete': False' to parameters. You might also perform a cleanup after a full rebuild of the HNSW index, by calling /cleanup.

Status endpoint

You can also get the information about the status of your data via the /status endpoint. This returns a Document whose tags contain the relevant information. The information can be returned via the following keys:

  • 'psql_docs': number of Documents stored in the PSQL database (includes entries that have been "soft-deleted")
  • 'hnsw_docs': the number of Documents indexed in the HNSW index
  • 'last_sync': the time of the last synchronization of PSQL into HNSW
  • 'pea_id': the shard number

In a sharded environment (parallel>1) you will get one Document from each shard. Each shard will have its own 'hnsw_docs', 'last_sync', 'pea_id', but they will all report the same 'psql_docs' (The PSQL database is available to all your shards). You need to sum the 'hnsw_docs' across these Documents, like so

result = f.post('/status', None, return_results=True)
result_docs = result[0].docs
total_hnsw_docs = sum(d.tags['hnsw_docs'] for d in result_docs)
Comments
  • Changing how /status method returns its values to try and merge with …

    Changing how /status method returns its values to try and merge with …

    …any pre-existing tags from previous executors if any.

    A shot at addressing the issue mentioned in https://github.com/jina-ai/executor-hnsw-postgres/issues/23

    opened by louisconcentricsky 6
  • feat: performance improvements

    feat: performance improvements

    Closes https://github.com/jina-ai/executor-hnsw-postgres/issues/6

    Results before this PR:

    indexing 1000 takes 0 seconds (0.22s)
    rolling update 3 replicas x 2 shards takes 0 seconds (0.82s)
    search with 10 takes 0 seconds (0.23s)
    
    indexing 10000 takes 0 seconds (0.75s)
    rolling update 3 replicas x 2 shards takes 9 seconds (9.08s)
    search with 10 takes 0 seconds (0.22s)
    
    indexing 100000 takes 7 seconds (7.59s)
    rolling update 3 replicas x 2 shards takes 7 minutes and 17 seconds (437.44s)
    search with 10 takes 0 seconds (0.22s)
    
    

    RESULTS NOW

    indexing 1000 takes 0 seconds (0.44s)                                                                                   
    rolling update 3 replicas x 2 shards takes 0 seconds (0.81s)
    
    indexing 10000 takes 1 second (1.01s)                                                                                   
    rolling update 3 replicas x 2 shards takes 2 seconds (2.63s)
    
    indexing 100000 takes 8 seconds (8.10s)                                                                                 
    rolling update 3 replicas x 2 shards takes 3 minutes and 27 seconds (207.14s)
    
    

    MORE BENCHMARKING

    indexing 500000 takes 30 seconds (30.07s)    
    rolling update 3 replicas x 2 shards takes 26 minutes and 57 seconds (1617.99s)
    search with 10 takes 0 seconds (0.21s)
    
    opened by cristianmtr 3
  • Status endpoint does not allow for compositing data with other executors

    Status endpoint does not allow for compositing data with other executors

    If another executor would also like to report some status information using the same status endpoint the return of the HNSQPostgresIndexer will remove it.

    It seems some manner of using object update on the tags or just placing the status under a particular key would be more friendlier.

    https://github.com/jina-ai/executor-hnsw-postgres/blob/79754090665e8bb86e85ab5693fa9b8be80977ce/executor/hnswpsql.py#L322

    opened by louisconcentricsky 1
  • feat: background sync (with threads)

    feat: background sync (with threads)

    Closes https://github.com/jina-ai/internal-tasks/issues/293

    Issues

    • [x] timestamp timezone difference
    • [x] psql connection pool gets exhausted
    • [x] locking resources in threaded access

    NOTE: Even if we don't merge this, the refactoring of PSQL Handler still needs to be merged, as the previous usage of Conn Pool had issues.

    opened by cristianmtr 1
  • fail to connect to PostgreSQL with docker-compose

    fail to connect to PostgreSQL with docker-compose

    • start a PostgreSQL service with docker:

    docker run -e POSTGRES_PASSWORD=123456 -p 127.0.0.1:5432:5432/tcp postgres:13.2

    • build a flow with one executor:HNSWPostgresIndexer

    • run the flow locally, it works well

    • expose the flow to docker-compose yaml, and run the flow with docker-compose ,get an error:

    image

    jina version info:

    
    - jina 3.3.19
    - docarray 0.12.2
    - jina-proto 0.1.8
    - jina-vcs-tag (unset)
    - protobuf 3.20.0
    - proto-backend cpp
    - grpcio 1.43.0
    - pyyaml 6.0
    - python 3.10.2
    - platform Linux
    - platform-release 4.4.0-186-generic
    - platform-version #216-Ubuntu SMP Wed Jul 1 05:34:05 UTC 2020
    - architecture x86_64
    - processor x86_64
    - uid 48710637999860
    - session-id 906abcd2-c797-11ec-b1df-2c4d544656f4
    - uptime 2022-04-29T16:37:11.758133
    - ci-vendor (unset)
    * JINA_DEFAULT_HOST (unset)
    * JINA_DEFAULT_TIMEOUT_CTRL (unset)
    * JINA_DEFAULT_WORKSPACE_BASE /home/chenhao/.jina/executor-workspace
    * JINA_DEPLOYMENT_NAME (unset)
    * JINA_DISABLE_UVLOOP (unset)
    * JINA_FULL_CLI (unset)
    * JINA_GATEWAY_IMAGE (unset)
    * JINA_GRPC_RECV_BYTES (unset)
    * JINA_GRPC_SEND_BYTES (unset)
    * JINA_HUBBLE_REGISTRY (unset)
    * JINA_HUB_CACHE_DIR (unset)
    * JINA_HUB_NO_IMAGE_REBUILD (unset)
    * JINA_HUB_ROOT (unset)
    * JINA_LOG_CONFIG (unset)
    * JINA_LOG_LEVEL (unset)
    * JINA_LOG_NO_COLOR (unset)
    * JINA_MP_START_METHOD (unset)
    * JINA_RANDOM_PORT_MAX (unset)
    * JINA_RANDOM_PORT_MIN (unset)
    * JINA_VCS_VERSION (unset)
    * JINA_CHECK_VERSION True
    
    opened by jerrychen1990 0
  • test: bug rolling update clear

    test: bug rolling update clear

    if you remove from tests/integration/test_hnsw_psql.py

    L:180

            if benchmark:
                f.post('/clear')
    

    the test test_benchmark_basic fails when it runs the second case

    even though clear is called at the beginning of the flow.

    Why?

    yes, /clear only hits one replica. but when we restart the flow there should be completely new replicas anyway

    opened by cristianmtr 0
  • performance(HNSWPSQL): syncing is slow

    performance(HNSWPSQL): syncing is slow

    Right now sync will be slow

    • [ ] we are iterating and doing individual updates (should batch somehow, per sync operation type - index, update, delete)
    • [x] if rebuild, the operations will always be index. We should optimize for this. Done in #5

    Numbers before any perf refactoring

    Performance

    indexing 1000 ...       indexing 1000 takes 0 seconds (0.22s)
    rolling update 3 replicas x 2 shards ...            [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
    rolling update 3 replicas x 2 shards takes 0 seconds (0.82s)
    search with 10 ...      search with 10 takes 0 seconds (0.23s)
    
    indexing 10000 ...      indexing 10000 takes 0 seconds (0.75s)
    rolling update 3 replicas x 2 shards ...            [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
    rolling update 3 replicas x 2 shards takes 9 seconds (9.08s)
    search with 10 ...      search with 10 takes 0 seconds (0.22s)
    
    indexing 100000 ...     indexing 100000 takes 7 seconds (7.59s)
    rolling update 3 replicas x 2 shards ...            [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
    rolling update 3 replicas x 2 shards takes 7 minutes and 17 seconds (437.44s)
    search with 10 ...      search with 10 takes 0 seconds (0.22s)
    
    
    priority/important-soon type/maintenance 
    opened by cristianmtr 0
Releases(v0.9)
  • v0.8(Mar 8, 2022)

  • v0.7(Feb 11, 2022)

  • v0.6(Jan 3, 2022)

    What's Changed

    • docs: fix typo in delete endpoint and clarify by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/14

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.5...v0.6

    Source code(tar.gz)
    Source code(zip)
  • v0.5(Dec 14, 2021)

    What's Changed

    • fix: type of trav paths by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/13

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.4...v0.5

    Source code(tar.gz)
    Source code(zip)
  • v0.4(Dec 9, 2021)

    What's Changed

    • fix: allow using Executor in local mode by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/12

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.3...v0.4

    Source code(tar.gz)
    Source code(zip)
  • v0.3(Nov 26, 2021)

    What's Changed

    • feat: background sync (with threads) by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/9
    • docs: add docs on bg sync by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/11

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.2...v0.3

    Source code(tar.gz)
    Source code(zip)
  • v0.2(Nov 22, 2021)

  • v0.1(Nov 18, 2021)

Owner
Jina AI
A Neural Search Company. We provide the cloud-native neural search solution powered by state-of-the-art AI technology.
Jina AI
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022