Rocket-recycling with Reinforcement Learning

Overview

Rocket-recycling with Reinforcement Learning

Developed by: Zhengxia Zou

IMAGE ALT TEXT HERE

I have long been fascinated by the recovery process of SpaceX rockets. In this mini-project, I worked on an interesting question that whether we can address this problem with simple reinforcement learning.

I tried on two tasks: hovering and landing. The rocket is simplified into a rigid body on a 2D plane with a thin rod, considering the basic cylinder dynamics model and air resistance proportional to the velocity.

Their reward functions are quite straightforward.

  1. For the hovering tasks: the step-reward is given based on two factors:

    1. the distance between the rocket and the predefined target point - the closer they are, the larger reward will be assigned.
    2. the angle of the rocket body (the rocket should stay as upright as possible)
  2. For the landing task: the step-reward is given based on three factors:

    1. and 2) are the same as the hovering task
    2. Speed and angle at the moment of contact with the ground - when the touching-speed are smaller than a safe threshold and the angle is close to 90 degrees (upright), we see it as a successful landing and a big reward will be assigned.

A thrust-vectoring engine is installed at the bottom of the rocket. This engine provides different thrust values (0, 0.5g, and 1.5g) with three different angles (-15, 0, and +15 degrees).

The action space is defined as a collection of the discrete control signals of the engine. The state-space consists of the rocket position (x, y), speed (vx, vy), angle (a), angle speed (va), and the simulation time steps (t).

I implement the above environment and train a policy-based agent (actor-critic) on solving this problem. The episode reward finally converges very well after over 40000 training episodes.

Despite the simple setting of the environment and the reward, the agent successfully learned the starship classic belly flop maneuver, which makes me quite surprising. The following animation shows a comparison between the real SN10 and a fake one learned from reinforcement learning.

Requirements

See Requirements.txt.

Usage

To train an agent, see ./example_train.py

To test an agent:

import torch
from rocket import Rocket
from policy import ActorCritic
import os
import glob

# Decide which device we want to run on
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

if __name__ == '__main__':

    task = 'hover'  # 'hover' or 'landing'
    max_steps = 800
    ckpt_dir = glob.glob(os.path.join(task+'_ckpt', '*.pt'))[-1]  # last ckpt

    env = Rocket(task=task, max_steps=max_steps)
    net = ActorCritic(input_dim=env.state_dims, output_dim=env.action_dims).to(device)
    if os.path.exists(ckpt_dir):
        checkpoint = torch.load(ckpt_dir)
        net.load_state_dict(checkpoint['model_G_state_dict'])

    state = env.reset()
    for step_id in range(max_steps):
        action, log_prob, value = net.get_action(state)
        state, reward, done, _ = env.step(action)
        env.render(window_name='test')
        if env.already_crash:
            break

License

Creative Commons License Rocket-recycling by Zhengxia Zou is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation

@misc{zou2021rocket,
  author = {Zhengxia Zou},
  title = {Rocket-recycling with Reinforcement Learning},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/jiupinjia/rocket-recycling}}
}
Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022