Optimal skincare partition finder using graph theory

Related tags

Algorithmspigment
Overview

Pigment

License: ISC CC BY-SA 4.0

The problem of partitioning up a skincare regime into parts such that each part does not interfere with itself is equivalent to the minimal clique cover problem, which can be transformed into the vertex colouring of a graph, both of which are NP-hard and thus computationally infeasible to find optimal solutions for. This project is a brute-force proof-of-concept that exhaustively solves the problem of good skincare product grouping!

Usage

  1. Modify the ingredient conflict dictionary (named conflicts in the pigment.py mainline) to reflect your skincare products. If you say A conflicts with B, you don't have to also write the rule that B conflicts with A. The script handles the reflexivity.

  2. Run the program (you need Python 3):

    python3 pigment.py

Algorithm

This algorithm takes in an adjacency list for a conflict graph where each edge between two nodes represents an instance of two ingredients conflicting.

It then exhaustively generates every possible partition using a recursive backtracking depth-first-search algorithm where for each ingredient, it explores every sub-tree consisting of adding the ingredient to every existing part before finally creating a new part. Each terminal/leaf node represents a generated partition, which we exhaustively check: for each part in the partition, we check to see if any pair exists as an edge in the conflict dictionary. If no such pairs exist among any part, the partition is valid.

partition tree

The algorithm looks for the valid partition with the least amount of parts.

The number of partitions that are brute-force generated is equivalent to the nth Bell number and it is sequence A000110 in the OEIS.

It runs in O(a fuckton of time). If you have a lot of stuff in your skincare routine, this algorithm may take forever to run. It is recommended that you do not add vanity elements (aka adding an element just for it to show up in the final result) such as:

CONFLICTS = OrderedDict((
    ("A", ["B", "C"])
    ("D", [])
))

In this case, "D" is a vanity element; it contributes nothing to conflict data but bloats the state space (which, in a brute-force algorithm like this, is not good). If an element doesn't conflict with anything, then use it as liberally as you like without restriction.

You have been warned.

Modelling

Say, for the purposes of illustration (as these opinions are still hotly debated in the skincare community today), we have the following ingredients:

  • Retinol
  • AHAs/BHAs
  • Copper peptides
  • Ferrulic acid

and the following interactions:

  • Retinol and AHAs/BHAs conflict with each other
  • Copper peptides interfere with AHAs/BHAs
  • Ferrulic acid interferes with copper peptides

We can therefore model compatible products as an undirected graph where each node represents a skincare ingredient and each edge between node a and node b represents the sentence "ingredient a is compatible with ingredient b". We can represent the relation above as such:

compatibility graph

The ideal here is that we want to take all four of these ingredients at once, however as noted by the conflicts above, that isn't possible. The next best solution, if we can't create 1 part, is to try to create 2 part. We know that in our model, retinol is compatible with copper peptides, and ferrulic acid is compatible with AHAs/BHAs, but we discard the possibility of using retinol with ferrulic acid though, as its part contains AHAs/BHAs, which are not compatible with retinol (as shown by the lack of edge).

minimum clique

This is the optimal solution. In one skincare session, we take retinol with the copper peptides, and another session we take AHAs/BHAs and ferrulic acid.

Our major goal, therefore, is to partition the ingredients list into as few parts as possible such that each parts's ingredients represents a clique, where a clique is an induced subgraph that is complete. In layperson's terms, we are looking to create subgraphs of ingredients such that each ingredient has an edge connected to every other ingredient node in the subgraph. Such complete subgraphs are known as cliques. As shown below, when two ingredients are compatible with each other, the resultant clique has a single edge between two nodes (as shown by K2: 1). For four ingredients, the resultant clique has six edges between the four nodes (as shown by K2:6). To see ten ingredients compatible with each other is somewhat uncommon.

complete graphs These images are taken from Wikipedia.org and are by koko90. See attribution for details

Minimal Clique Cover

In formal terms, a "clique cover" or "partition into cliques" of an undirected graph is a partition (or splitting of the graph into groups) into constituent cliques. Our problem is to find the "minimal" clique cover—aka—doing it in the least number of cliques—or splits—possible. As shown in the figure above, the trivial case is K1: 0 as each individual ingredient is its own clique, but that's the worst-case scenario we are trying to avoid. It would mean that no skincare ingredient is compatible with anything else e.g. you may have to take each 10 skincare ingredient on separate days, which would be a scheduling nightmare.

Graph Colouring

We can make things more readable by looking at an equivalent problem.

Given a graph G, the complement of the graph, let's call it G2, is a graph with the same nodes as G, but every edge in the original graph is missing, and every midding edge in the original graph is now an edge. In layperson's terms, a complement graph G2 for graph G contains only the edges necessary to turn G into a complete graph, as shown by this diagram:

complement of the Petersen graph Image edited by Claudio Rocchini; derived from David Eppstein. See attribution for details

We can invert the "maximal clique" problem by not mapping whether two skincare products are compatible with each other, but rather if they conflict. This makes specifications a whole lot easier to make, as now we can assume anything that isn't connected by an edge is compatible. If we change our first graph to model conflicts instead of synergies, we get the following:

conflict graph

Our problem is now to induce subgraphs such that none of the nodes have any edges between them. Each subgraph is its own group. In this example, we induce the subgraphs for the nodes {Retinol, Copper peptides} as well as for {Ferrulic acid, AHAs/BHAs}, as each graph has no nodes:

coloured conflict graph

Those with a background in CS will immediately notice that this is actually the well-studied graph colouring sub-problem known as "vertex colouring": colouring a graph such that no two colours are adjacent to each other. In this case, each colour group represents a partition, like from earlier. Again, the optimization problem is NP-hard and is intractable. Which is why the algorithm solves the colouring problem in the ugliest, most brute force way possible.

Bibliography

Attribution

  • Graphs made by me using Dreampuf's Dot Grapher and they are licensed as CC BY-SA 4.0 as the project is
  • Complete graphs K1, K2, and K3 are simple geometry and thus are in the public domain (author is David Benbennick).
  • Simplex graphs 4, 5, 6, 7, 8, 9, 10, 11, were released by Koko90 under GFDL and CC BY-SA 3.0 and will be coalesced into the license of this project, thus making them CC BY-SA 4.0
  • The Petersen graph complement image was edited by Claudio Rocchini whose original author was David Eppstein, also released under GFDL and CC BY-SA 3.0. CC BY-SA 4.0 as per the project.
Owner
Jason Nguyen
CS @ University of Guelph
Jason Nguyen
marching rectangles algorithm in python with clean code.

Marching Rectangles marching rectangles algorithm in python with clean code. Tools Python 3 EasyDraw Creators Mohammad Dori Run the Code Installation

Mohammad Dori 3 Jul 15, 2022
Python Client for Algorithmia Algorithms and Data API

Algorithmia Common Library (python) Python client library for accessing the Algorithmia API For API documentation, see the PythonDocs Algorithm Develo

Algorithmia 138 Oct 26, 2022
A tictactoe where you never win, implemented using minimax algorithm

Unbeatable_TicTacToe A tictactoe where you never win, implemented using minimax algorithm Requirements Make sure you have the pygame module along with

Jessica Jolly 3 Jul 28, 2022
This python algorithm creates a simple house floor plan based on a user-provided CSV file.

This python algorithm creates a simple house floor plan based on a user-provided CSV file. The algorithm generates possible router placements and evaluates where a signal will be reached in every roo

Joshua Miller 1 Nov 12, 2021
A genetic algorithm written in Python for educational purposes.

Genea: A Genetic Algorithm in Python Genea is a Genetic Algorithm written in Python, for educational purposes. I started writing it for fun, while lea

Dom De Felice 20 Jul 06, 2022
This repository is not maintained

This repository is no longer maintained, but is being kept around for educational purposes. If you want a more complete algorithms repo check out: htt

Nic Young 2.8k Dec 30, 2022
A simple library for implementing common design patterns.

PyPattyrn from pypattyrn.creational.singleton import Singleton class DummyClass(object, metaclass=Singleton): # DummyClass is now a Singleton!

1.7k Jan 01, 2023
Implementation for Evolution of Strategies for Cooperation

Moraliser Implementation for Evolution of Strategies for Cooperation Dependencies You will need a python3 (= 3.8) environment to run the code. Before

1 Dec 21, 2021
Python Sorted Container Types: Sorted List, Sorted Dict, and Sorted Set

Python Sorted Containers Sorted Containers is an Apache2 licensed sorted collections library, written in pure-Python, and fast as C-extensions. Python

Grant Jenks 2.8k Jan 04, 2023
Python implementation of Aho-Corasick algorithm for string searching

Python implementation of Aho-Corasick algorithm for string searching

Daniel O'Sullivan 1 Dec 31, 2021
A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.

8QueensGenetic A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD. The project uses the Kivy cross-p

Ahmed Gad 16 Nov 13, 2022
A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines

py-earth A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines algorithm, in the style of scikit-learn. The py-earth p

431 Dec 15, 2022
Classic algorithms including Fizz Buzz, Bubble Sort, the Fibonacci Sequence, a Sudoku solver, and more.

Algorithms Classic algorithms including Fizz Buzz, Bubble Sort, the Fibonacci Sequence, a Sudoku solver, and more. Algorithm Complexity Time and Space

1 Jan 14, 2022
A lightweight, pure-Python mobile robot simulator designed for experiments in Artificial Intelligence (AI) and Machine Learning, especially for Jupyter Notebooks

aitk.robots A lightweight Python robot simulator for JupyterLab, Notebooks, and other Python environments. Goals A lightweight mobile robotics simulat

3 Oct 22, 2021
This repository provides some codes to demonstrate several variants of Markov-Chain-Monte-Carlo (MCMC) Algorithms.

Demo-of-MCMC These files are based on the class materials of AEROSP 567 taught by Prof. Alex Gorodetsky at University of Michigan. Author: Hung-Hsiang

Sean 1 Feb 05, 2022
A calculator to test numbers against the collatz conjecture

The Collatz Calculator This is an algorithm custom built by Kyle Dickey, used to test numbers against the simple rules of the Collatz Conjecture. Get

Kyle Dickey 2 Jun 14, 2022
frePPLe - open source supply chain planning

frePPLe Open source supply chain planning FrePPLe is an easy-to-use and easy-to-implement open source advanced planning and scheduling tool for manufa

frePPLe 385 Jan 06, 2023
Robotic Path Planner for a 2D Sphere World

Robotic Path Planner for a 2D Sphere World This repository contains code implementing a robotic path planner in a 2D sphere world with obstacles. The

Matthew Miceli 1 Nov 19, 2021
There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

1 Nov 19, 2021
RRT algorithm and its optimization

RRT-Algorithm-Visualisation This is a project that aims to develop upon the RRT

Sarannya Bhattacharya 7 Mar 06, 2022