[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

Overview

RainNet — Official Pytorch Implementation

Sample image

Region-aware Adaptive Instance Normalization for Image Harmonization
Jun Ling, Han Xue, Li Song*, Rong Xie, Xiao Gu

Paper: link
Video: link


Table of Contents

  1. Introduction
  2. Preparation
  3. Usage
  4. Results
  5. Citation
  6. Acknowledgement

Introduction

This work treats image harmonization as a style transfer problem. In particular, we propose a simple yet effective Region-aware Adaptive Instance Normalization (RAIN) module, which explicitly formulates the visual style from the background and adaptively applies them to the foreground. With our settings, our RAIN module can be used as a drop-in module for existing image harmonization networks and is able to bring significant improvements. Extensive experiments on the existing image harmonization benchmark datasets shows the superior capability of the proposed method.

Preparation

1. Clone this repo:

git clone https://github.com/junleen/RainNet
cd RainNet

2. Requirements

  • Both Linux and Windows are supported, but Linux is recommended for compatibility reasons.
  • We have tested on Python 3.6 with PyTorch 1.4.0 and PyTorch 1.8.1+cu11.

install the required packages using pip:

pip3 install -r requirements.txt

or conda:

conda create -n rainnet python=3.6
conda activate rainnet
pip install -r requirements.txt

3. Prepare the data

  • Download iHarmony4 dataset and extract the images. Because the images are too big in the origianl dataset, we suggest you to resize the images (eg, 512x512, or 256x256) and save the resized images in your local device.
  • We provide the code in data/preprocess_iharmony4.py. For example, you can run:
    python data/preprocess_iharmony4.py --dir_iharmony4 <DIR_of_iHarmony4> --save_dir <SAVE_DIR> --image_size <IMAGE_SIZE>
    This will help you to resize the images to a fixed size, eg, <image_size, image_size>. If you want to keep the aspect ratio of the original images, please run:
    python data/preprocess_iharmony4.py --dir_iharmony4 <DIR_of_iHarmony4> --save_dir <SAVE_DIR> --image_size <IMAGE_SIZE> --keep_aspect_ratio

4. Download our pre-trained model

  • Download the pretrained model from Google Drive, and put net_G.pth in the directory checkpoints/experiment_train. You can also save the checkpoint in other directories and change the checkpoints_dir and name in /util/config.py accordingly.

Usage

1. Evaluation

We provide the code in evaluate.py, which supports the model evaluation in iHarmony4 dataset.

Run:

python evaluate.py --dataset_root <DATA_DIR> --save_dir evaluated --batch_size 16 --device cuda 

If you want to save the harmonized images, you can add --store_image at the end of the command. The evaluating results will be saved in the evaluated directory.

2. Testing with your own examples

In this project, we also provide the easy testing code in test.py to help you test on other cases. However, you are required to assign image paths in the file for each trial. For example, you can follow:

comp_path = 'examples/1.png' or ['examples/1.png', 'examples/2.png']
mask_path = 'examples/1-mask.png' or ['examples/1-mask.png', 'examples/2-mask.png']
real_path = 'examples/1-gt.png' or ['examples/1-gt.png', 'examples/2-gt.png']

If there is no groundtruth image, you can set real_path to None

3. Training your own model

Please update the command arguments in scripts/train.sh and run:

bash scripts/train.sh

Results

Comparison1 Comparison2

Citation

If you use our code or find this work useful for your future research, please kindly cite our paper:

@inproceedings{ling2021Rainnet,
    title     = {Region-aware Adaptive Instance Normalization for Image Harmonization}, 
    author    = {Ling, Jun and Xue, Han and Song, Li and Xie, Rong and Gu, Xiao}, 
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
    year      = {2021}
}

Acknowledgement

For some of the data modules and model functions used in this source code, we need to acknowledge the repo of DoveNet and pix2pix.

Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022