RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

Related tags

Deep LearningRDA
Overview

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

Updates

Paper

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking
Jiaxing Huang, Dayan Guan, Xiao Aoran, Shijian Lu
School of Computer Science Engineering, Nanyang Technological University, Singapore
International Conference on Computer Vision, 2021.

If you find this code/paper useful for your research, please cite our paper:

@article{huang2021rda,
  title={RDA: Robust Domain Adaptation via Fourier Adversarial Attacking},
  author={Huang, Jiaxing and Guan, Dayan and Xiao, Aoran and Lu, Shijian},
  journal={arXiv preprint arXiv:2106.02874},
  year={2021}
}

Abstract

Unsupervised domain adaptation (UDA) involves a supervised loss in a labeled source domain and an unsupervised loss in an unlabeled target domain, which often faces more severe overfitting (than classical supervised learning) as the supervised source loss has clear domain gap and the unsupervised target loss is often noisy due to the lack of annotations. This paper presents RDA, a robust domain adaptation technique that introduces adversarial attacking to mitigate overfitting in UDA. We achieve robust domain adaptation by a novel Fourier adversarial attacking (FAA) method that allows large magnitude of perturbation noises but has minimal modification of image semantics, the former is critical to the effectiveness of its generated adversarial samples due to the existence of domain gaps. Specifically, FAA decomposes images into multiple frequency components (FCs) and generates adversarial samples by just perturbating certain FCs that capture little semantic information. With FAA-generated samples, the training can continue the random walk and drift into an area with a flat loss landscape, leading to more robust domain adaptation. Extensive experiments over multiple domain adaptation tasks show that RDA can work with different computer vision tasks with superior performance.

Installation

  1. Conda enviroment:
conda create -n rda python=3.6
conda activate rda
conda install -c menpo opencv
pip install torch==1.0.0 torchvision==0.2.1
  1. Clone the ADVENT:
git clone https://github.com/valeoai/ADVENT.git
pip install -e ./ADVENT
  1. Clone the CRST:
git clone https://github.com/yzou2/CRST.git
pip install packaging h5py
  1. Clone the repo:
https://github.com/jxhuang0508/RDA.git
pip install -e ./RDA
cp RDA/crst/*py CRST
cp RDA/crst/deeplab/*py CRST/deeplab

Prepare Dataset

  • GTA5: Please follow the instructions here to download images and semantic segmentation annotations. The GTA5 dataset directory should have this basic structure:
RDA/data/GTA5/                               % GTA dataset root
RDA/data/GTA5/images/                        % GTA images
RDA/data/GTA5/labels/                        % Semantic segmentation labels
...
  • Cityscapes: Please follow the instructions in Cityscape to download the images and validation ground-truths. The Cityscapes dataset directory should have this basic structure:
RDA/data/Cityscapes/                         % Cityscapes dataset root
RDA/data/Cityscapes/leftImg8bit              % Cityscapes images
RDA/data/Cityscapes/leftImg8bit/val
RDA/data/Cityscapes/gtFine                   % Semantic segmentation labels
RDA/data/Cityscapes/gtFine/val
...

Pre-trained models

Pre-trained models can be downloaded here and put in RDA/pretrained_models

Evaluation

To evaluate RDA_FAA_T:

cd RDA/CRST
python evaluate_advent.py --test-flipping --data-dir ../RDA/data/Cityscapes --restore-from ../RDA/pretrained_models/model_FAA_T.pth --save ../RDA/experiments/GTA2Cityscapes_RDA

To evaluate RDA_FAA_S_T:

cd RDA/CRST
python evaluate_advent.py --test-flipping --data-dir ../RDA/data/Cityscapes --restore-from ../RDA/pretrained_models/model_FAA_S_T.pth.pth --save ../RDA/experiments/GTA2Cityscapes_RDA

Training

To train RDA_FAA_T:

cd RDA/rda/scripts
python train.py --cfg configs/RDA.yml

To test RDA_FAA_T:

cd RDA/CRST
./test_best.sh

Acknowledgements

This codebase is heavily borrowed from ADVENT and CRST.

Contact

If you have any questions, please contact: [email protected]

You might also like...
Semi-supervised Domain Adaptation via Minimax Entropy
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

Progressive Domain Adaptation for Object Detection
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

Code release for
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

Code to reproduce the experiments in the paper
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

PyTorch code for the paper
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Self-Supervised Learning for Domain Adaptation on Point-Clouds
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

Comments
  • About 3D image

    About 3D image

    Hi jxhuang0508! Recently I am trying to reimplement your idea for 3D image situation. However, the results isn't well. Do you have any suggestion during training FAA module or something we should be careful when we expand to the 3D problem?

    Another question, I saw your code and observed that you only take "one batch" data from target domain for FAA's reference, is that correct?

    And about inference phase, do we still need to process FAA module? Thanks!

    opened by adchentc 0
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023