[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

Overview

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

This repository is the official PyTorch implementation of CORE-Text, and contains demo training and evaluation scripts.

CORE-Text

Requirements

Training Demo

Base (Mask R-CNN)

To train Base (Mask R-CNN) on a single node with 4 gpus, run:

#!/usr/bin/env bash

GPUS=4
PORT=${PORT:-29500}
PYTHON=${PYTHON:-"python"}

CONFIG=configs/icdar2017mlt/base.py
WORK_DIR=work_dirs/mask_rcnn_r50_fpn_train_base

$PYTHON -m torch.distributed.launch --nproc_per_node=$GPUS \
                                    --nnodes=1 --node_rank=0 --master_addr="localhost" \
                                    --master_port=$PORT \
                                    tools/train.py \
                                    $CONFIG \
                                    --no-validate \
                                    --launcher pytorch \
                                    --work-dir ${WORK_DIR} \
                                    --seed 0

VRM

To train VRM on a single node with 4 gpus, run:

#!/usr/bin/env bash

GPUS=4
PORT=${PORT:-29500}
PYTHON=${PYTHON:-"python"}

CONFIG=configs/icdar2017mlt/vrm.py
WORK_DIR=work_dirs/mask_rcnn_r50_fpn_train_vrm

$PYTHON -m torch.distributed.launch --nproc_per_node=$GPUS \
                                    --nnodes=1 --node_rank=0 --master_addr="localhost" \
                                    --master_port=$PORT \
                                    tools/train.py \
                                    $CONFIG \
                                    --no-validate \
                                    --launcher pytorch \
                                    --work-dir ${WORK_DIR} \
                                    --seed 0

CORE

To train CORE (ours) on a single node with 4 gpus, run:

#!/usr/bin/env bash

GPUS=4
PORT=${PORT:-29500}
PYTHON=${PYTHON:-"python"}

# pre-training
CONFIG=configs/icdar2017mlt/core_pretrain.py
WORK_DIR=work_dirs/mask_rcnn_r50_fpn_train_core_pretrain

$PYTHON -m torch.distributed.launch --nproc_per_node=$GPUS \
                                    --nnodes=1 --node_rank=0 --master_addr="localhost" \
                                    --master_port=$PORT \
                                    tools/train.py \
                                    $CONFIG \
                                    --no-validate \
                                    --launcher pytorch \
                                    --work-dir ${WORK_DIR} \
                                    --seed 0

# training
CONFIG=configs/icdar2017mlt/core.py
WORK_DIR=work_dirs/mask_rcnn_r50_fpn_train_core

$PYTHON -m torch.distributed.launch --nproc_per_node=$GPUS \
                                    --nnodes=1 --node_rank=0 --master_addr="localhost" \
                                    --master_port=$PORT \
                                    tools/train.py \
                                    $CONFIG \
                                    --no-validate \
                                    --launcher pytorch \
                                    --work-dir ${WORK_DIR} \
                                    --seed 0

Evaluation Demo

GPUS=4
PORT=${PORT:-29500}
CONFIG=path/to/config
CHECKPOINT=path/to/checkpoint

python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT \
    ./tools/test.py $CONFIG $CHECKPOINT --launcher pytorch \
    --eval segm \
    --not-encode-mask \
    --eval-options "jsonfile_prefix=path/to/work_dir/results/eval" "gt_path=data/icdar2017mlt/icdar2017mlt_gt.zip"

Dataset Format

The structure of the dataset directory is shown as following, and we provide the COCO-format label (ICDAR2017_train.json and ICDAR2017_val.json) and the ground truth zipfile (icdar2017mlt_gt.zip) for training and evaluation.

data
└── icdar2017mlt
    ├── annotations
    |   ├── ICDAR2017_train.json
    |   └── ICDAR2017_val.json
    ├── icdar2017mlt_gt.zip
    └── image
         ├── train
         └── val

Results

Our model achieves the following performance on ICDAR 2017 MLT val set. Note that the results are slightly different (~0.1%) from what we reported in the paper, because we reimplement the code based on the open-source mmdetection.

Method Backbone Training set Test set Hmean Precision Recall Download
Base (Mask R-CNN) ResNet50 ICDAR 2017 MLT Train ICDAR 2017 MLT Val 0.800 0.828 0.773 model | log
VRM ResNet50 ICDAR 2017 MLT Train ICDAR 2017 MLT Val 0.812 0.853 0.774 model | log
CORE (ours) ResNet50 ICDAR 2017 MLT Train ICDAR 2017 MLT Val 0.821 0.872 0.777 model | log

Citation

@inproceedings{9428457,
  author={Lin, Jingyang and Pan, Yingwei and Lai, Rongfeng and Yang, Xuehang and Chao, Hongyang and Yao, Ting},
  booktitle={2021 IEEE International Conference on Multimedia and Expo (ICME)},
  title={Core-Text: Improving Scene Text Detection with Contrastive Relational Reasoning},
  year={2021},
  pages={1-6},
  doi={10.1109/ICME51207.2021.9428457}
}
Owner
Jingyang Lin
Graduate student @ SYSU.
Jingyang Lin
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023