MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

Overview

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

Introduction

The 3D LiDAR place recognition aims to estimate a coarse localization in a previously seen environment based on a single scan from a rotating 3D LiDAR sensor. The existing solutions to this problem include hand-crafted point cloud descriptors (e.g., ScanContext, M2DP, LiDAR IRIS) and deep learning-based solutions (e.g., PointNetVLAD, PCAN, LPD-Net, DAGC, MinkLoc3D), which are often only evaluated on accumulated 2D scans from the Oxford RobotCat dataset. We introduce MinkLoc3D-SI, a sparse convolution-based solution that utilizes spherical coordinates of 3D points and processes the intensity of the 3D LiDAR measurements, improving the performance when a single 3D LiDAR scan is used. Our method integrates the improvements typical for hand-crafted descriptors (like ScanContext) with the most efficient 3D sparse convolutions (MinkLoc3D). Our experiments show improved results on single scans from 3D LiDARs (USyd Campus dataset) and great generalization ability (KITTI dataset). Using intensity information on accumulated 2D scans (RobotCar Intensity dataset) improves the performance, even though spherical representation doesn’t produce a noticeable improvement. As a result, MinkLoc3D-SI is suited for single scans obtained from a 3D LiDAR, making it applicable in autonomous vehicles.

Fig1

Citation

Paper details will be uploaded after acceptance. This work is an extension of Jacek Komorowski's MinkLoc3D.

Environment and Dependencies

Code was tested using Python 3.8 with PyTorch 1.7 and MinkowskiEngine 0.5.0 on Ubuntu 18.04 with CUDA 11.0.

The following Python packages are required:

  • PyTorch (version 1.7)
  • MinkowskiEngine (version 0.5.0)
  • pytorch_metric_learning (version 0.9.94 or above)
  • numba
  • tensorboard
  • pandas
  • psutil
  • bitarray

Modify the PYTHONPATH environment variable to include absolute path to the project root folder:

export PYTHONPATH=$PYTHONPATH:/.../.../MinkLoc3D-SI

Datasets

Preprocessed University of Sydney Campus dataset (USyd) and Oxford RobotCar dataset with intensity channel (IntensityOxford) available here. Extract the dataset folders on the same directory as the project code, so that you have three folders there: 1) IntensityOxford/ 2) MinkLoc3D-SI/ and 3) USyd/.

The pickle files used for positive/negative examples assignment are compatible with the ones introduced in PointNetVLAD and can be generated using the scripts in generating_queries/ folder. The benchmark datasets (Oxford and In-house) introduced in PointNetVLAD can also be used following the instructions in PointNetVLAD.

Before the network training or evaluation, run the below code to generate pickles with positive and negative point clouds for each anchor point cloud.

cd generating_queries/ 

# Generate training tuples for the USyd Dataset
python generate_training_tuples_usyd.py

# Generate evaluation tuples for the USyd Dataset
python generate_test_sets_usyd.py

# Generate training tuples for the IntensityOxford Dataset
python generate_training_tuples_intensityOxford.py

# Generate evaluation tuples for the IntensityOxford Dataset
python generate_test_sets_intensityOxford.py

Training

To train MinkLoc3D-SI network, prepare the data as described above. Edit the configuration file (config/config_usyd.txt or config/config_intensityOxford.txt):

  • num_points - number of points in the point cloud. Points are randomly subsampled or zero-padding is applied during loading, if there number of points is too big/small
  • max_distance - maximum used distance from the sensor, points further than max_distance are removed
  • dataset_name - USyd / IntensityOxford / Oxford
  • dataset_folder - path to the dataset folder
  • batch_size_limit parameter depending on available GPU memory. In our experiments with 10GB of GPU RAM in the case of USyd (23k points) the limit was set to 84, for IntensityOxford (4096 points) the limit was 256.

Edit the model configuration file (models/minkloc_config.txt):

  • version - MinkLoc3D / MinkLoc3D-I / MinkLoc3D-S / MinkLoc3D-SI
  • mink_quantization_size - desired quantization (IntensityOxford and Oxford coordinates are normalized [-1, 1], so the quantization parameters need to be adjusted accordingly!):
    • MinkLoc3D/3D-I: qx,qy,qz units: [m, m, m]
    • MinkLoc3D-S/3D-SI qr,qtheta,qphi units: [m, deg, deg]

To train the network, run:

cd training

# To train the desired model on the USyd Dataset
python train.py --config ../config/config_usyd.txt --model_config ../models/minkloc_config.txt

Evaluation

Pre-trained MinkLoc3D-SI trained on USyd is available in the weights folder. To evaluate run the following command:

cd eval

# To evaluate the model trained on the USyd Dataset
python evaluate.py --config ../config/config_usyd.txt --model_config ../models/minkloc_config.txt --weights ../weights/MinkLoc3D-SI-USyd.pth

License

Our code is released under the MIT License (see LICENSE file for details).

References

  1. J. Komorowski, "MinkLoc3D: Point Cloud Based Large-Scale Place Recognition", Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), (2021)
  2. M. A. Uy and G. H. Lee, "PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022