This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Overview

Wide-Networks

This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameterizations of NNs as defined by (Yang & Hu 2021). Although an equivalent description can be given using only ac-parameterizations, we keep the 3 scales (a, b and c) in the code to allow more flexibility depending on how we want to approach the problem of dealing with infinitely wide NNs.

Structure of the code

The BaseModel class

All the code related to neural networks is in the directory pytorch. The different models we have implemented are in this directory along with the base class found in the file base_model.py which implements the generic attributes and methods all our NNs classes will share.

The BaseModel class inherits from the Pytorch Lightning module, and essentially defines the necessary attributes for any NN to work properly, namely the architecture (which is defined in the _build_model() method), the activation function (we consider the same activation function at each layer), the loss function, the optimizer and the initializer for the parameters of the network.

Optionally, the BaseModel class can define attributes for the normalization (e.g. BatchNorm, LayerNorm, etc) and the scheduler, and any of the aforementioned attributes (optional or not) can be customized depending on the needs (see examples for the scheduler of ipllr and the initializer of abc_param).

The ModelConfig class

All the hyper-parameters which define the model (depth, width, activation function name, loss name, optimizer name, etc) have to be passed as argument to _init_() as an object of the class ModelConfig (pytorch/configs/model.py). This class reads from a yaml config file which defines all the necessary objects for a NN (see examples in pytorch/configs). Essentially, the class ModelConfig is here so that one only has to set the yaml config file properly and then the attributes are correctly populated in BaseModel via the class ModelConfig.

abc-parameterizations

The code for abc-parameterizations (Yang & Hu 2021) can be found in pytorch/abc_params. There we define the base class for abc-parameterizations, mainly setting the layer, init and lr scales from the values of a,b,c, as well as defining the initial parameters through Gaussians of appropriate variance depending on the value of b and the activation function.

Everything that is architecture specific (fully-connected, conv, residual, etc) is left out of this base class and has to be implemented in the _build_model() method of the child class (see examples in pytorch/abc_params/fully_connected). We also define there the base classes for the ntk, muP (Yang & Hu 2021), ip and ipllr parameterizations, and there fully-connected implementations in pytorch/abc_params/fully_connected.

Experiment runs

Setup

Before running any experiment, make sure you first install all the necessary packages:

pip3 install -r requirements.txt

You can optionally create a virtual environment through

python3 -m venv your_env_dir

then activate it with

source your_env_dir/bin/activate

and then install the requirements once the environment is activated. Now, if you haven't installed the wide-networks library in site-packages, before running the command for your experiment, make sure you first add the wide-networks library to the PYTHONPATH by running the command

export PYTHONPATH=$PYTHONPATH:"$PWD"

from the root directory (wide-networks/.) of where the wide-networks library is located.

Python jobs

We define python jobs which can be run with arguments from the command line in the directory jobs. Mainly, those jobs launch a training / val / test pipeline for a given model using the Lightning module, and the results are collected in a dictionary which is saved to a pickle file a the end of training for later examination. Additionally, metrics are logged in TensorBoard and can be visualized during training with the command

tensorboard --logdir=`your_experiment_dir`

We have written jobs to launch experiments on MNIST and CIFAR-10 with the fully connected version of different models such as muP (Yang & Hu 2021), IP-LLR, Naive-IP which can be found in jobs/abc_parameterizations. Arguments can be passed to those Python scripts through the command line, but they are optional and the default values will be used if the parameters of the script are not manually set. For example, the command

python3 jobs/abc_parameterizations/fc_muP_run.py --activation="relu" --n_steps=600 --dataset="mnist"

will launch a training / val / test pipeline with ReLU as the activation function, 600 SGD steps and the MNIST dataset. The other parameters of the run (e.g. the base learning rate and batch size) will have their default values. The jobs will automatically create a directory (and potentially subdirectories) for the experiment and save there the python logs, the tensorboard events and the results dictionary saved to a pickle file as well as the checkpoints saved for the network.

Visualizing results

To visualize the results after training for a given experiment, one can launch the notebook experiments-results.ipynb located in pytorch/notebooks/training/abc_parameterizations, and simply change the arguments in the "Set variables" cell to load the results from the corresponding experiment. Then running all the cells will produce (and save) some figures related to the training phase (e.g. loss vs. steps).

Owner
Karl Hajjar
PhD student at Laboratoire de Mathématiques d'Orsay
Karl Hajjar
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022