SQL for Humans™

Overview

Records: SQL for Humans™

https://travis-ci.org/kennethreitz/records.svg?branch=master

Records is a very simple, but powerful, library for making raw SQL queries to most relational databases.

https://farm1.staticflickr.com/569/33085227621_7e8da49b90_k_d.jpg

Just write SQL. No bells, no whistles. This common task can be surprisingly difficult with the standard tools available. This library strives to make this workflow as simple as possible, while providing an elegant interface to work with your query results.

Database support includes RedShift, Postgres, MySQL, SQLite, Oracle, and MS-SQL (drivers not included).


☤ The Basics

We know how to write SQL, so let's send some to our database:

import records

db = records.Database('postgres://...')
rows = db.query('select * from active_users')    # or db.query_file('sqls/active-users.sql')

Grab one row at a time:

>>> rows[0]
<Record {"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "[email protected]", "timezone": "2016-02-06 22:28:23.894202"}>

Or iterate over them:

for r in rows:
    print(r.name, r.user_email)

Values can be accessed many ways: row.user_email, row['user_email'], or row[3].

Fields with non-alphanumeric characters (like spaces) are also fully supported.

Or store a copy of your record collection for later reference:

>>> rows.all()
[<Record {"username": ...}>, <Record {"username": ...}>, <Record {"username": ...}>, ...]

If you're only expecting one result:

>>> rows.first()
<Record {"username": ...}>

Other options include rows.as_dict() and rows.as_dict(ordered=True).

☤ Features

  • Iterated rows are cached for future reference.
  • $DATABASE_URL environment variable support.
  • Convenience Database.get_table_names method.
  • Command-line records tool for exporting queries.
  • Safe parameterization: Database.query('life=:everything', everything=42).
  • Queries can be passed as strings or filenames, parameters supported.
  • Transactions: t = Database.transaction(); t.commit().
  • Bulk actions: Database.bulk_query() & Database.bulk_query_file().

Records is proudly powered by SQLAlchemy and Tablib.

☤ Data Export Functionality

Records also features full Tablib integration, and allows you to export your results to CSV, XLS, JSON, HTML Tables, YAML, or Pandas DataFrames with a single line of code. Excellent for sharing data with friends, or generating reports.

>>> print(rows.dataset)
username|active|name      |user_email       |timezone
--------|------|----------|-----------------|--------------------------
model-t |True  |Henry Ford|[email protected]|2016-02-06 22:28:23.894202
...

Comma Separated Values (CSV)

>>> print(rows.export('csv'))
username,active,name,user_email,timezone
model-t,True,Henry Ford,[email protected],2016-02-06 22:28:23.894202
...

YAML Ain't Markup Language (YAML)

>>> print(rows.export('yaml'))
- {active: true, name: Henry Ford, timezone: '2016-02-06 22:28:23.894202', user_email: model-t@gmail.com, username: model-t}
...

JavaScript Object Notation (JSON)

>>> print(rows.export('json'))
[{"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "[email protected]", "timezone": "2016-02-06 22:28:23.894202"}, ...]

Microsoft Excel (xls, xlsx)

with open('report.xls', 'wb') as f:
    f.write(rows.export('xls'))

Pandas DataFrame

>>> rows.export('df')
    username  active       name        user_email                   timezone
0    model-t    True Henry Ford model-t@gmail.com 2016-02-06 22:28:23.894202

You get the point. All other features of Tablib are also available, so you can sort results, add/remove columns/rows, remove duplicates, transpose the table, add separators, slice data by column, and more.

See the Tablib Documentation for more details.

☤ Installation

Of course, the recommended installation method is pipenv:

$ pipenv install records[pandas]
✨🍰✨

☤ Command-Line Tool

As an added bonus, a records command-line tool is automatically included. Here's a screenshot of the usage information:

Screenshot of Records Command-Line Interface.

☤ Thank You

Thanks for checking this library out! I hope you find it useful.

Of course, there's always room for improvement. Feel free to open an issue so we can make Records better, stronger, faster.

Owner
Kenneth Reitz
Software Engineer focused on abstractions, reducing cognitive overhead, and Design for Humans.
Kenneth Reitz
Anomaly detection on SQL data warehouses and databases

With CueObserve, you can run anomaly detection on data in your SQL data warehouses and databases. Getting Started Install via Docker docker run -p 300

Cuebook 171 Dec 18, 2022
Python interface to Oracle Database conforming to the Python DB API 2.0 specification.

cx_Oracle version 8.2 (Development) cx_Oracle is a Python extension module that enables access to Oracle Database. It conforms to the Python database

Oracle 841 Dec 21, 2022
SpyQL - SQL with Python in the middle

SpyQL SQL with Python in the middle Concept SpyQL is a query language that combines: the simplicity and structure of SQL with the power and readabilit

Daniel Moura 853 Dec 30, 2022
Redis Python Client

redis-py The Python interface to the Redis key-value store. Python 2 Compatibility Note redis-py 3.5.x will be the last version of redis-py that suppo

Andy McCurdy 11k Dec 29, 2022
A simple Python tool to transfer data from MySQL to SQLite 3.

MySQL to SQLite3 A simple Python tool to transfer data from MySQL to SQLite 3. This is the long overdue complimentary tool to my SQLite3 to MySQL. It

Klemen Tusar 126 Jan 03, 2023
The Database Toolkit for Python

SQLAlchemy The Python SQL Toolkit and Object Relational Mapper Introduction SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that giv

SQLAlchemy 6.5k Jan 01, 2023
A fast unobtrusive MongoDB ODM for Python.

MongoFrames MongoFrames is a fast unobtrusive MongoDB ODM for Python designed to fit into a workflow not dictate one. Documentation is available at Mo

getme 45 Jun 01, 2022
Toolkit for storing files and attachments in web applications

DEPOT - File Storage Made Easy DEPOT is a framework for easily storing and serving files in web applications on Python2.6+ and Python3.2+. DEPOT suppo

Alessandro Molina 139 Dec 25, 2022
Redis client for Python asyncio (PEP 3156)

Redis client for Python asyncio. Redis client for the PEP 3156 Python event loop. This Redis library is a completely asynchronous, non-blocking client

Jonathan Slenders 554 Dec 04, 2022
Implementing basic MySQL CRUD (Create, Read, Update, Delete) queries, using Python.

MySQL with Python Implementing basic MySQL CRUD (Create, Read, Update, Delete) queries, using Python. We can connect to a MySQL database hosted locall

MousamSingh 5 Dec 01, 2021
sync/async MongoDB ODM, yes.

μMongo: sync/async ODM μMongo is a Python MongoDB ODM. It inception comes from two needs: the lack of async ODM and the difficulty to do document (un)

Scille 428 Dec 29, 2022
A selection of SQLite3 databases to practice querying from.

Dummy SQL Databases This is a collection of dummy SQLite3 databases, for learning and practicing SQL querying, generated with the VS Code extension Ge

1 Feb 26, 2022
Python PostgreSQL adapter to stream results of multi-statement queries without a server-side cursor

streampq Stream results of multi-statement PostgreSQL queries from Python without server-side cursors. Has benefits over some other Python PostgreSQL

Department for International Trade 6 Oct 31, 2022
A supercharged SQLite library for Python

SuperSQLite: a supercharged SQLite library for Python A feature-packed Python package and for utilizing SQLite in Python by Plasticity. It is intended

Plasticity 703 Dec 30, 2022
Makes it easier to write raw SQL in Python.

CoolSQL Makes it easier to write raw SQL in Python. Usage Quick Start from coolsql import Field name = Field("name") age = Field("age") condition =

Aber 7 Aug 21, 2022
Asynchronous Python client for InfluxDB

aioinflux Asynchronous Python client for InfluxDB. Built on top of aiohttp and asyncio. Aioinflux is an alternative to the official InfluxDB Python cl

Gustavo Bezerra 159 Dec 27, 2022
SQL queries to collections

SQC SQL Queries to Collections Examples from sqc import sqc data = [ {"a": 1, "b": 1}, {"a": 2, "b": 1}, {"a": 3, "b": 2}, ] Simple filte

Alexander Volkovsky 0 Jul 06, 2022
Confluent's Kafka Python Client

Confluent's Python Client for Apache KafkaTM confluent-kafka-python provides a high-level Producer, Consumer and AdminClient compatible with all Apach

Confluent Inc. 3.1k Jan 05, 2023
This is a repository for a task assigned to me by Bilateral solutions!

Processing-Files-using-MySQL This is a repository for a task assigned to me by Bilateral solutions! Task: Make Folders named Processing,queue and proc

Kandal Khandeka 1 Nov 07, 2022
dask-sql is a distributed SQL query engine in python using Dask

dask-sql is a distributed SQL query engine in Python. It allows you to query and transform your data using a mixture of common SQL operations and Python code and also scale up the calculation easily

Nils Braun 271 Dec 30, 2022