A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

Overview

CoVA: Context-aware Visual Attention for Webpage Information Extraction

Abstract

Webpage information extraction (WIE) is an important step to create knowledge bases. For this, classical WIE methods leverage the Document Object Model (DOM) tree of a website. However, use of the DOM tree poses significant challenges as context and appearance are encoded in an abstract manner. To address this challenge we propose to reformulate WIE as a context-aware Webpage Object Detection task. Specifically, we develop a Context-aware Visual Attention-based (CoVA) detection pipeline which combines appearance features with syntactical structure from the DOM tree. To study the approach we collect a new large-scale dataset of e-commerce websites for which we manually annotate every web element with four labels: product price, product title, product image and background. On this dataset we show that the proposed CoVA approach is a new challenging baseline which improves upon prior state-of-the-art methods.

CoVA Dataset

We labeled 7,740 webpages spanning 408 domains (Amazon, Walmart, Target, etc.). Each of these webpages contains exactly one labeled price, title, and image. All other web elements are labeled as background. On average, there are 90 web elements in a webpage.

Webpage screenshots and bounding boxes can be obtained here

Train-Val-Test split

We create a cross-domain split which ensures that each of the train, val and test sets contains webpages from different domains. Specifically, we construct a 3 : 1 : 1 split based on the number of distinct domains. We observed that the top-5 domains (based on number of samples) were Amazon, EBay, Walmart, Etsy, and Target. So, we created 5 different splits for 5-Fold Cross Validation such that each of the major domains is present in one of the 5 splits for test data. These splits can be accessed here

CoVA End-to-end Training Pipeline

Our Context-Aware Visual Attention-based end-to-end pipeline for Webpage Object Detection (CoVA) aims to learn function f to predict labels y = [y1, y2, ..., yN] for a webpage containing N elements. The input to CoVA consists of:

  1. a screenshot of a webpage,
  2. list of bounding boxes [x, y, w, h] of the web elements, and
  3. neighborhood information for each element obtained from the DOM tree.

This information is processed in four stages:

  1. the graph representation extraction for the webpage,
  2. the Representation Network (RN),
  3. the Graph Attention Network (GAT), and
  4. a fully connected (FC) layer.

The graph representation extraction computes for every web element i its set of K neighboring web elements Ni. The RN consists of a Convolutional Neural Net (CNN) and a positional encoder aimed to learn a visual representation vi for each web element i ∈ {1, ..., N}. The GAT combines the visual representation vi of the web element i to be classified and those of its neighbors, i.e., vk ∀k ∈ Ni to compute the contextual representation ci for web element i. Finally, the visual and contextual representations of the web element are concatenated and passed through the FC layer to obtain the classification output.

Pipeline

Experimental Results

Table of Comparison Cross Domain Accuracy (mean ± standard deviation) for 5-fold cross validation.

NOTE: Cross Domain means we train the model on some web domains and test it on completely different domains to evaluate the generalizability of the models to unseen web templates.

Attention Visualizations!

Attention Visualizations Attention Visualizations where red border denotes web element to be classified, and its contexts have green shade whose intensity denotes score. Price in (a) get much more score than other contexts. Title and image in (b) are scored higher than other contexts for price.

Cite

If you find this useful in your research, please cite our ArXiv pre-print:

Coming soon!
Owner
Keval Morabia
AI @bloomberg | UIUC CS | Ex - AWS, Microsoft Research
Keval Morabia
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023