Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Related tags

Deep LearningViP
Overview

Visual Parser (ViP)

This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers.

Visual Parser

Key Features & TLDR

  1. PyTorch Implementation of the ViP network. Check it out at models/vip.py

  2. A fast and neat implementation of the relative positional encoding proposed in HaloNet, BOTNet and AANet.

  3. A transformer-friendly FLOPS & Param counter that supports FLOPS calculation for einsum and matmul operations.

Prerequisite

Please refer to get_started.md.

Results and Models

All models listed below are evaluated with input size 224x224

Model Top1 Acc #params FLOPS Download
ViP-Tiny 79.0 12.8M 1.7G Google Drive
ViP-Small 82.1 32.1M 4.5G Google Drive
ViP-Medium 83.3 49.6M 8.0G Coming Soon
ViP-Base 83.6 87.8M 15.0G Coming Soon

To load the pretrained checkpoint, e.g. ViP-Tiny, simply run:

# first download the checkpoint and name it as vip_t_dict.pth
from models.vip import vip_tiny
model = vip_tiny(pretrained="vip_t_dict.pth")

Evaluation

To evaluate a pre-trained ViP on ImageNet val, run:

python3 main.py <data-root> --model <model-name> -b <batch-size> --eval_checkpoint <path-to-checkpoint>

Training from scratch

To train a ViP on ImageNet from scratch, run:

bash ./distributed_train.sh <job-name> <config-path> <num-gpus>

For example, to train ViP with 8 GPU on a single node, run:

ViP-Tiny:

bash ./distributed_train.sh vip-t-001 configs/vip_t_bs1024.yaml 8

ViP-Small:

bash ./distributed_train.sh vip-s-001 configs/vip_s_bs1024.yaml 8

ViP-Medium:

bash ./distributed_train.sh vip-m-001 configs/vip_m_bs1024.yaml 8

ViP-Base:

bash ./distributed_train.sh vip-b-001 configs/vip_b_bs1024.yaml 8

Profiling the model

To measure the throughput, run:

python3 test_throughput.py <model-name>

For example, if you want to get the test speed of Vip-Tiny on your device, run:

python3 test_throughput.py vip-tiny

To measure the FLOPS and number of parameters, run:

python3 test_flops.py <model-name>

Citing ViP

@article{vip,
  title={Visual Parser: Representing Part-whole Hierarchies with Transformers},
  author={Sun, Shuyang and Yue, Xiaoyu, Bai, Song and Torr, Philip},
  journal={arXiv preprint arXiv:2107.05790},
  year={2021}
}

Contact

If you have any questions, don't hesitate to contact Shuyang (Kevin) Sun. You can easily reach him by sending an email to [email protected].

Owner
Shuyang Sun
DPhil (PhD) student at Oxford
Shuyang Sun
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
Api for getting bin info and getting encrypted card details for adyen.

Bin Info And Adyen Cse Enc Python api for getting bin info and getting encrypted

Roldex Stark 8 Dec 30, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022