SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

Related tags

Deep LearningSkipGNN
Overview

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks

Molecular interaction networks are powerful resources for the discovery. While deep learning on graphs has dramatically advanced the prediction prowess, current graph neural network (GNN) methods are optimized for prediction on the basis of direct similarity between interacting nodes. In biological networks, however, similarity between nodes that do not directly interact has proved incredibly useful in the last decade across a variety of interaction networks.

Here, we present SkipGNN, it predicts molecular interactions by not only aggregating information from direct interactions but also from second-order interactions, which we call skip similarity. In contrast to existing GNNs, SkipGNN receives neural messages from two-hop neighbors as well as immediate neighbors in the interaction network and non-linearly transforms the messages to obtain useful information for prediction.

fig1

(Left) Traditionally, an interaction between nodes A and B implies that A and B are similar and vice versa. (Right) In contrast, in molecular interaction networks, directly interacting entities are not necessarily similar, which has been observed in numerous networks, including genetic interaction networks and protein-protein interaction networks.

Install

git clone https://github.com/kexinhuang12345/SkipGNN.git
cd SkipGNN
python setup.py install

Example

python train.py \
    --epochs 15 \
    --lr 5e-4 \
    --batch_size 256 \
    --hidden1 64 \
    --hidden2 16 \
    --hidden_decode1 512 \
    --network_type DTI \
    --data_path '../data/DTI/fold1' \
    --input_type one_hot

You can change the network_type to DTI, DDI, PPI, GDI. Please change the data_path accordingly.

In the paper, we use node2vec to initialize the node attributes. But empirically, we find simple one-hot position encoding is also good for SkipGNN. If you want to reproduce the result, you could put the node2vec embedding generated from this repo under data/DTI/fold1/dti.emb and set --input_type node2vec.

A Jupyter notebook example is provided in DEMO.

Dataset

We provide the dataset in the data folder.

Data Source Description Processing Code
DTI BIOSNAP A drug-target interaction network betweeen 5,018 drugs that target 2,325 proteins with 15,139 interactions. The drugs are from the US market. data_process_DTI.ipynb
DDI BIOSNAP A drug-drug interaction network betweeen 1,514 drugs with 48,514 interactions, which are approved by the FDA. data_process_DDI.ipynb
PPI HuRI A protein-protein interaction network from the Human Reference Protein Interactome Mapping Project. We use the HuRI-III version from the L3 paper. It consists of 5,604 proteins with 23,322 interactions. data_process_PPI.ipynb
GDI DisGeNET A disease-gene association network betweeen 9,413 genes and 10,370 diseases with 81,746 associations, which are curated from GWAS studies. data_process_GDI.ipynb

Skip-Graph Construction

To integrate the power of skip-graph in your own GNN codes, you could simply apply a new GNN on the skip graph, which is generated using two lines. adj is a scipy.sparse adjacency matrix for the original graph.

adj_skip = adj.dot(adj)
adj_skip = adj_skip.sign()

See here for more details.

Cite Us

Cite arxiv for now:

@article{huang2020skipgnn,
  title={SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks},
  author={Huang, Kexin and Xiao, Cao and Glass, Lucas and Zitnik, Marinka and Sun, Jimeng},
  journal={arXiv preprint arXiv:2004.14949},
  year={2020}
}

The code framework is based on pygcn.

Contact

Please send questions to [email protected] or open an issue.

Owner
Kexin Huang
Health Data Science @ Harvard, prev. NYU Math & CS
Kexin Huang
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022