Tracking Progress in Question Answering over Knowledge Graphs

Overview

Tracking Progress in Question Answering over Knowledge Graphs

Table of contents

Question Answering Systems with Descriptions

The QA Systems Table contains links to publications, demo/APIs (if available) and short descriptions of ca. 100 QA systems.

DBpedia

Wikidata

Freebase

Other KGs

This leaderboard aims to provide a central place to compare the capabilities of different Knowledge Graph Question Answering (KGQA) approaches. It gives a global view of the state-of-the-art (SOTA) across many KGQA benchmarks.

Using a global and open resource, trusting evaluation results will be easier. In particular, we want to close gaps in evaluation campaigns to avoid incomplete or missing comparisons. The ultimate goal is to prevent a replication crisis before it even starts.

Contributing

Adding a new result

If you would like to add a new result, you can just click on the small edit button in the top-right corner of the file for the respective dataset. This allows you to edit the file in Markdown. Simply add a row to the corresponding table in the same format. Make sure that the table stays sorted (with the best result on top). After you've made your change, make sure that the table still looks ok by clicking on the "Preview changes" tab at the top of the page. If everything looks good, go to the bottom of the page, where you see the below form.

Add a name for your proposed change, an optional description, indicate that you would like to "Create a new branch for this commit and start a pull request", and click on "Propose file change".

Adding a new dataset or task

For adding a new dataset or task, you can also follow the steps above. Alternatively, you can fork the repository. In both cases, follow the steps below:

  1. If your dataset is completely new, create a new file and link to it in the table of contents above.
  2. Briefly describe the dataset and include relevant references.
  3. Describe the evaluation setting and evaluation metric.
  4. Show how an annotated example of the dataset looks like.
  5. Add a download link if available.
  6. Copy the below table and fill in at least two results (including the state-of-the-art) for your dataset (change Metric1/Metric2/Metric3 to the metric of your dataset).
  7. Submit your change as a pull request.
Model / System Year Metric1 Metric2 Metric3 Reported by

Instructions for building the site locally

Instructions for building the website locally using Jekyll can be found here.

Citation

Please cite the following:

Perevalov, A., Yan, X., Kovriguina, L., Jiang, L., Both, A., & Usbeck, R. (2022). Knowledge Graph Question Answering Leaderboard: A Community Resource to Prevent a Replication Crisis. arXiv preprint arXiv:2201.08174.

Acknowledgement

This site is based on https://nlpprogress.com/ and thus, a great thanks goes to Sebastian Ruder.

Owner
Knowledge Graph Question Answering
Knowledge Graph Question Answering
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022