Implementing yolov4 target detection and tracking based on nao robot

Overview

基于nao机器人实现yolov4目标检测并进行跟踪

Introduction - 介绍

本项目为yolov4算法在nao机器人上的应用。

关于YOLOv4原理请参考YOLOv4原论文
本项目主要YOLOv4框架参考Bubbliiiing博主复现的代码
原博客链接:https://blog.csdn.net/weixin_44791964/article/details/106214657
复现代码链接:https://github.com/bubbliiiing/yolov4-pytorch
nao机器人单目测距方法请参考:https://wenku.baidu.com/view/bdc7eea7482fb4daa48d4b24.html
使用本项目前请先下载复现YOLOv4代码,并用py3.6文件夹中.py文件替换原文件中的同名文件


下图为目标跟踪流程图。由于nao机器人sdk库naoqi仅支持py2.7环境,本项目需分别运行py2.7环境下的"封装跟踪.py"文件和py3.6环境下的"predict.py"文件。
该项目可以让nao机器人转头寻找水瓶目标,检测到目标后通过单目测距向目标前进,当目标距离和nao小于1.09m时,程序完成运行。 image

Requirements - 必要条件

py2.7环境

numpy==1.16.6+vanilla
opencv-python==2.4.13.7
Pillow==6.2.2
pynaoqi==2.1.4.13

tips

naoqi库为软银官方提供的nao机器人sdk
naoqi库百度云链接:链接: https://pan.baidu.com/s/1kib-Bx9BjiOXCjrIycsIAw 提取码: 5k8b


py3.6环境

pytorch和cuda版本参考Bubbliiiing博文,其他缺少环境任意版本即可。 参考环境见py3.6环境文件(仅供参考,因为包含了很多自用无关的库)

Configuration - 配置

使用本项目前请先下载复现YOLOv4代码,并用py3.6文件夹中.py文件替换原文件中的同名文件
YOLOv4环境的配置方法:
1.将训练好的只检测水瓶类的权重文件放入model_data文件夹,并替换yolo.py中的初始路径
2.把model_data文件夹下的voc_classes.txt文件中物品类别改为只有bottle
3.更多问题详见Bubbliiiing博文。

本项目跟踪的只有水瓶类,所以训练时只提取了VOC2007数据集中的水瓶类别
只有水瓶类别的VOC2007数据集百度云链接:链接: https://pan.baidu.com/s/1d11f3lm2BvPtwxXuRYZ5HQ 提取码: w2kn
训练好的只检测水瓶类的权重百度云链接: 链接: https://pan.baidu.com/s/1Qt__j8RAOZeRbY8BjXitpA 提取码: 5u2b

Usage - 用法

配置好py3.6和py2.7环境后。先运行"封装跟踪.py"文件,再运行"predict.py"文件。
检测到的图片信息可见于img文件夹

Changelog - 更新日志

License - 版权信息

本项目证书为GPL-3.0 License,详见GPL-3.0 License.md

Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022