TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Overview

Training CIFAR-10 with TensorFlow2(TF2)

TensorFlow 2.4 Python 3.8 License

TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset.

Architectures

Prerequisites

  • Python 3.8+
  • TensorFlow 2.4.0+

Training

Start training with:

python train.py --model resnet18

You can manually resume the training with:

python train.py --model resnet18 --resume

Testing

python test.py --model resnet18

Accuracy

Model Acc. Param.
LeNet 67.85% 0.06M
AlexNet 78.81% 21.6M
VGG11 92.61% 9.2M
VGG13 94.31% 9.4M
VGG16 94.27% 14.7M
VGG19 93.65% 20.1M
ResNet18 95.37% 11.2M
ResNet34 95.48% 21.3M
ResNet50 95.41% 23.6M
ResNet101 95.44% 42.6M
ResNet152 95.29% 58.3M
DenseNet121 95.37% 7.0M
DenseNet169 95.10% 12.7M
DenseNet201 94.79% 18.3M
PreAct-ResNet18 94.08% 11.2M
PreAct-ResNet34 94.76% 21.3M
PreAct-ResNet50 94.81% 23.6M
PreAct-ResNet101 94.95% 42.6M
PreAct-ResNet152 95.07% 58.3M
SE-ResNet18 95.44% 11.3M
SE-ResNet34 95.30% 21.5M
SE-ResNet50 95.76% 26.1M
SE-ResNet101 95.40% 47.3M
SE-ResNet152 95.29% 64.9M
SE-PreAct-ResNet18 94.54% 11.3M
SE-PreAct-ResNet34 95.30% 21.5M
SE-PreAct-ResNet50 94.22% 26.1M
SE-PreAct-ResNet101 94.34% 47.3M
SE-PreAct-ResNet152 94.28% 64.9M
MobileNet 92.34% 3.2M
MobileNetV2 94.03% 2.3M

Note

All abovementioned models are available. To specify the model, please use the model name without the hyphen. For instance, to train with SE-PreAct-ResNet18, you can run the following script:

python train.py --model sepreactresnet18

If you suffer from loss=nan issue, you can circumvent it by using a smaller learning rate, i.e.

python train.py --model sepreactresnet18 --lr 5e-2
Owner
Chia-Hung Yuan
Chia-Hung Yuan
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019