6D Grasping Policy for Point Clouds

Overview

GA-DDPG

[website, paper]

image

Installation

git clone https://github.com/liruiw/GA-DDPG.git --recursive
  1. Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, python 2.7 / 3.6

    • (Required for Training) - Install OMG submodule and reuse conda environment.
    • (Docker) See OMG Docker for details.
    • (Demo) - Install GA-DDPG inside a new conda environment
      conda create --name gaddpg python=3.6.9
      conda activate gaddpg
      pip install -r requirements.txt
      
  2. Install PointNet++

  3. Download environment data bash experiments/scripts/download_data.sh

Pretrained Model Demo

  1. Download pretrained models bash experiments/scripts/download_model.sh
  2. Demo model test bash experiments/scripts/test_demo.sh
Example 1 Example 2

Save Data and Offline Training

  1. Download example offline data bash experiments/scripts/download_offline_data.sh The .npz dataset (saved replay buffer) can be found in data/offline_data and can be loaded for training.
  2. To save extra gpus for online rollouts, use the offline training script bash ./experiments/scripts/train_offline.sh bc_aux_dagger.yaml BC
  3. Saving dataset bash ./experiments/scripts/train_online_save_buffer.sh bc_save_data.yaml BC.

Online Training and Testing

  1. We use ray for parallel rollout and training. The training scripts might require adjustment according to the local machine. See config.py for some notes.
  2. Training online bash ./experiments/scripts/train_online_visdom.sh td3_critic_aux_policy_aux.yaml DDPG. Use visdom and tensorboard to monitor.
  3. Testing on YCB objects bash ./experiments/scripts/test_ycb.sh demo_model. Replace demo_model with trained models. Logs and videos would be saved to output_misc

Note

  1. Checkout core/test_realworld_ros_final.py for an example of real-world usages.
  2. Related Works (OMG, ACRONYM, 6DGraspNet, 6DGraspNet-Pytorch, ContactGraspNet, Unseen-Clustering)
  3. To use the full Acronym dataset with Shapenet meshes, please follow ACRONYM to download the meshes and grasps and follow OMG-Planner to process and save in /data. filter_shapenet.json can then be used for training.
  4. Please use Github issue tracker to report bugs. For other questions please contact Lirui Wang.

File Structure

├── ...
├── GADDPG
|   |── data 		# training data
|   |   |── grasps 		# grasps from the ACRONYM dataset
|   |   |── objects 		# object meshes, sdf, urdf, etc
|   |   |── robots 		# robot meshes, urdf, etc
|   |   └── gaddpg_scenes	 	# test scenes
|   |── env 		# environment-related code
|   |   |── panda_scene 		# environment and task
|   |   └── panda_gripper_hand_camera 		# franka panda with gripper and camera
|   |── OMG 		# expert planner submodule
|   |── experiments 		# experiment scripts
|   |   |── config 		# hyperparameters for training, testing and environment
|   |   |── scripts 		# main running scripts
|   |   |── model_spec 		# network architecture spec
|   |   |── cfgs 		# experiment config and hyperparameters
|   |   └── object_index 		# object indexes
|   |── core 		# agents and learning
|   |   |──  train_online 		# online training
|   |   |──  train_test_offline 	# testing and offline training
|   |   |──  network 		# network architecture
|   |   |──  test_realworld_ros_final 		# real-world script example
|   |   |──  agent 		# main agent code
|   |   |──  replay_memory 		# replay buffer
|   |   |──  trainer 	# ray-related training setup
|   |   └── ...
|   |── output 		# trained model
|   |── output_misc 	# log and videos
|   └── ...
└── ...

Citation

If you find GA-DDPG useful in your research, please consider citing:

@inproceedings{wang2020goal,
	author    = {Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian, and Dieter Fox},
	title     = {Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds},
	booktitle = {arXiv:2010.00824},
	year      = {2020}
}

License

The GA-DDPG is licensed under the MIT License.

Owner
Lirui Wang
MIT CSAIL Ph.D. Student. Previous UWCSE and NVIDIA.
Lirui Wang
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022