Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

Overview

E(n)-Equivariant Transformer (wip)

Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant Graph Neural Network with attention.

Install

$ pip install En-transformer

Usage

import torch
from en_transformer import EnTransformer

model = EnTransformer(
    dim = 512,
    depth = 4,
    dim_head = 64,
    heads = 8,
    edge_dim = 4,
    fourier_features = 2
)

feats = torch.randn(1, 16, 512)
coors = torch.randn(1, 16, 3)
edges = torch.randn(1, 16, 16, 4)

feats, coors = model(feats, coors, edges)  # (1, 16, 512), (1, 16, 3)

Todo

  • masking
  • neighborhoods by radius

Citations

@misc{satorras2021en,
    title 	= {E(n) Equivariant Graph Neural Networks}, 
    author 	= {Victor Garcia Satorras and Emiel Hoogeboom and Max Welling},
    year 	= {2021},
    eprint 	= {2102.09844},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • Checkpoint sequential segments should equal number of layers instead of 1?

    Checkpoint sequential segments should equal number of layers instead of 1?

    https://github.com/lucidrains/En-transformer/blob/a37e635d93a322cafdaaf829397c601350b23e5b/en_transformer/en_transformer.py#L527

    Looking at the source code here: https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html#checkpoint_sequential

    opened by aced125 2
  • On rotary embeddings

    On rotary embeddings

    Hi @lucidrains, thank you for your amazing work; big fan! I had a quick question on the usage of this repository.

    Based on my understanding, rotary embeddings are a drop-in replacement for the original sinusoidal or learnt PEs in Transformers for sequential data, as in NLP or other temporal applications. If my application is not on sequential data, is there a reason why I should still use rotary embeddings?

    E.g. for molecular datasets such as QM9 (from the En-GNNs paper), would it make sense to have rotary embeddings?

    opened by chaitjo 1
  • Is this line required?

    Is this line required?

    https://github.com/lucidrains/En-transformer/blob/7247e258fab953b2a8b5a73b8dfdfb72910711f8/en_transformer/en_transformer.py#L159

    Is this line required? Does line 157, two lines above, make this line redundant?

    opened by aced125 1
  • Performance drop with checkpointing update

    Performance drop with checkpointing update

    I see a drop in performance (higher loss) when I update checkpointing from checkpoint_sequential(self.layers, 1, inp) to checkpoint_sequential(self.layers, len(self.layers), inp). Is this expected?

    opened by heiidii 0
  • varying number of nodes

    varying number of nodes

    @lucidrains Thank you for your efficient implementation. I was wondering how to use this implementation for the dataset when the number of nodes in each graph is not the same? For example, the datasets of small molecules.

    opened by mohaiminul2810 1
  • Edge model/rep

    Edge model/rep

    Hi,

    Thank you for providing this version of the EnGNN model. This is not really an issue just a query. The original model as implemented here (https://github.com/vgsatorras/egnn) has 3 main steps per layer: edge_feat = self.edge_model(h[row], h[col], radial, edge_attr) coord = self.coord_model(coord, edge_index, coord_diff, edge_feat) h, agg = self.node_model(h, edge_index, edge_feat, node_attr) I am interested in the edge_feat and was wondering what would be an equivalent edge representation in your implementation. Line 335 in EnTransformer.py: qk = self.edge_mlp(qk) seems like the best candidate. Thanks, Pooja

    opened by heiidii 1
  • efficient implementation

    efficient implementation

    Hi, I wonder if relative distances and coordinates can be handled more efficiently using memory efficient attention as in " Self-attention Does Not Need O(n^2) Memory". It is straightforward for the scalar part.

    opened by amrhamedp 2
Releases(1.0.2)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022