Learning nonlinear operators via DeepONet

Related tags

Deep Learningdeeponet
Overview

DeepONet: Learning nonlinear operators

DOI

The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nature Machine Intelligence, 2021.

System requirements

Most code is written in Python 3, and depends on the deep learning package DeepXDE. Some code is written in Matlab (version R2019a).

Installation guide

  1. Install Python 3
  2. Install DeepXDE (https://github.com/lululxvi/deepxde)
  3. Optional: For CNN, install Matlab and TensorFlow 1; for Seq2Seq, install PyTorch

The installation may take between 10 minutes and one hour.

Demo

Case Antiderivative

  1. Open deeponet_pde.py, and choose the parameters/setup in the functions main() and ode_system() based on the comments;
  2. Run deeponet_pde.py, which will first generate the two datasets (training and test) and then train a DeepONet. The training and test MSE errors will be displayed in the screen.

A standard output is

Building operator neural network...
'build' took 0.104784 s

Generating operator data...
'gen_operator_data' took 20.495655 s

Generating operator data...
'gen_operator_data' took 168.944620 s

Compiling model...
'compile' took 0.265885 s

Initializing variables...
Training model...

Step      Train loss    Test loss     Test metric
0         [1.09e+00]    [1.11e+00]    [1.06e+00]
1000      [2.57e-04]    [2.87e-04]    [2.76e-04]
2000      [8.37e-05]    [9.99e-05]    [9.62e-05]
...
50000     [9.98e-07]    [1.39e-06]    [1.09e-06]

Best model at step 46000:
  train loss: 6.30e-07
  test loss: 9.79e-07
  test metric: [7.01e-07]

'train' took 324.343075 s

Saving loss history to loss.dat ...
Saving training data to train.dat ...
Saving test data to test.dat ...
Restoring model from model/model.ckpt-46000 ...

Predicting...
'predict' took 0.056257 s

Predicting...
'predict' took 0.012670 s

Test MSE: 9.269857471315847e-07
Test MSE w/o outliers: 6.972881784590493e-07

You can get the training and test errors in the end of the output.

The run time could be between several minutes to several hours depending on the parameters you choose, e.g., the dataset size and the number of iterations for training.

Case Stochastic ODE/PDE

  1. Open sde.py, and choose the parameters/setup in the functions main();
  2. Run sde.py, which will generate traning and test datasets;
  3. Open deeponet_dataset.py, and choose the parameters/setup in the functions main();
  4. Run deeponet_dataset.py to train a DeepONet. The training and test MSE errors will be displayed in the screen.

Case 1D Caputo fractional derivative

  1. Go to the folder fractional;
  2. Run Caputo1D.m to generate training and test datasets. One can specify the orthongonal polynomial to be Legendre polynomial or poly-fractonomial in Orthogonal_polynomials.m. Expected run time: 20 mins.
  3. Run datasets.py to pack and compress the genrated datasets. Expected outputs: compressed .npz files. Expected run time: 5 mins.
  4. Run DeepONet_float32_batch.py to train and test DeepONets. Expected outputs: a figure of training and test losses. Expected run time: 1 hour.

Case 2D fractional Laplacian

Learning a 2D fractional Laplacian using DeepONets

  1. Run Fractional_Lap_2D.m to generate training and test datasets. Expected outputs: text files that store the training and test data. Expected run time: 40 mins.
  2. Run datasets.py to pack and compress the genrated datasets. Expected outputs: compressed .npz files. Expected run time: 15 mins.
  3. Run DeepONet_float32_batch.py to train and test DeepONets. Expected run time: 3 hours.

Learning a 2D fractional Laplacian using CNNs

  1. Suppose that the text files containing all training and test sets have been generated in the previous step.
  2. Run CNN_operator_alpha.py to train and test CNNs. Expected outputs: a figure of training and test losses. Expected run time: 30 mins.

Seq2Seq

  1. Open seq2seq_main.py, choose the problem in the function main(), and change the parameters/setup in the corresponding function (antiderivative()/pendulum()) if needed.
  2. Run seq2seq_main.py, which will first generate the dataset and then train the Seq2Seq model on the dataset. The training and test MSE errors will be displayed in the screen. Moreover, the loss history, generated data and trained best model will be saved in the direction ('./outputs/').

A standard output is

Training...
0             Train loss: 0.21926558017730713         Test loss: 0.22550159692764282
1000       Train loss: 0.0022761737927794456     Test loss: 0.0024939212016761303
2000       Train loss: 0.0004760705924127251     Test loss: 0.0005566366016864777
...
49000     Train loss: 1.2885914202342974e-06    Test loss: 1.999963387788739e-06
50000     Train loss: 1.1382834372852813e-06    Test loss: 1.8525416862757993e-06
Done!
'run' took 747.5421471595764 s
Best model at iteration 50000:
Train loss: 1.1382834372852813e-06 Test loss: 1.8525416862757993e-06

You can get the training and test errors in the end of the output.

The run time could be between several minutes to several hours depending on the parameters you choose, e.g., the dataset size and the number of iterations for training.

Instructions for use

The instructions for running each case are as follows.

  • Legendre transform: The same as Antiderivative in Demo. You need to modify the function main() in deeponet_pde.py.
  • Antiderivative: In Demo.
  • Fractional (1D): In Demo.
  • Fractional (2D): In Demo.
  • Nonlinear ODE: The same as Antiderivative in Demo. You need to modify the functions main() and ode_system() in deeponet_pde.py.
  • Gravity pendulum: The same as Antiderivative in Demo. You need to modify the functions main() and ode_system() in deeponet_pde.py.
  • Diffusion-reaction: The same as Antiderivative in Demo. You need to modify the function main() in deeponet_pde.py.
  • Advection: The same as Antiderivative in Demo. You need to modify the functions main() in deeponet_pde.py, run() in deeponet_pde.py, CVCSystem() in system.py, and solve_CVC() in CVC_solver.py to run each case.
  • Advection-diffusion: The same as Antiderivative in Demo. You need to modify the function main() in deeponet_pde.py.
  • Stochastic ODE/PDE: In Demo.

Questions

To get help on how to use the data or code, simply open an issue in the GitHub "Issues" section.

Comments
  • More than one input function maps to more than one output function by DeepONet

    More than one input function maps to more than one output function by DeepONet

    Hello Dr. Lu, It is very nice to get your reply. Following your answer, I think the data of the branch nets may be like this: [ u1(x1), ..., u1(xm) ] for one input function u1; [ u1(x1), ..., u1(xm), u2(x1), ..., u2(xm) ] for two input function u1 & u2. Or like this: [ u1(x1), u2(x1),..., u1(xm), u2(xm) ] ? I think the former seems to be the case. Do I have the correct understanding? I am looking forward to your reply. Thanks in advance.

    Originally posted by @WangYicunZJU in https://github.com/lululxvi/deeponet/issues/9#issuecomment-901184441

    opened by LVJIAQI777 5
  • Tests not running properly

    Tests not running properly

    Hi @lululxvi , Thanks for putting together deepxde. I was trying to get started with ODESystem but noticed a couple of things that are off. First off, here is my version info:

    In [1]: import tensorflow, deepxde
    
    In [2]: tensorflow.__version__
    Out[2]: '2.6.0'
    
    In [3]: deepxde.__version__
    Out[3]: '0.13.5'
    
    

    Now if I try to run the gravity pendulum ODE, I get a weird type mismatch error:

    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-6-359904db8a4e> in <module>()
         47 
         48 if __name__ == "__main__":
    ---> 49     main()
    
    14 frames
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
        992           except Exception as e:  # pylint:disable=broad-except
        993             if hasattr(e, "ag_error_metadata"):
    --> 994               raise e.ag_error_metadata.to_exception(e)
        995             else:
        996               raise
    
    TypeError: in user code:
    
        /usr/local/lib/python3.7/dist-packages/deepxde/model.py:169 outputs_losses  *
            losses = self.data.losses(targets, outputs_, loss_fn, self)
        /usr/local/lib/python3.7/dist-packages/deepxde/data/triple.py:32 losses  *
            return [loss(targets, outputs)]
        /usr/local/lib/python3.7/dist-packages/deepxde/losses.py:27 mean_squared_error  *
            return bkd.reduce_mean(bkd.square(y_true - y_pred))
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:1383 binary_op_wrapper
            raise e
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:1367 binary_op_wrapper
            return func(x, y, name=name)
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:206 wrapper
            return target(*args, **kwargs)
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:548 subtract
            return gen_math_ops.sub(x, y, name)
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/gen_math_ops.py:10654 sub
            "Sub", x=x, y=y, name=name)
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/op_def_library.py:558 _apply_op_helper
            inferred_from[input_arg.type_attr]))
    
        TypeError: Input 'y' of 'Sub' Op has type float32 that does not match type float64 of argument 'x'.
    
    

    Here is the piece of code that I am trying to run (I cloned and manually appended the path to the git repo to directly import some of the submodules)

    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import itertools
    
    import numpy as np
    import sys, os
    
    sys.path.append("deeponet/src/")
    
    import deepxde as dde
    from spaces import FinitePowerSeries, FiniteChebyshev, GRF
    from system import LTSystem, ODESystem, DRSystem, CVCSystem, ADVDSystem
    from utils import merge_values, trim_to_65535, mean_squared_error_outlier, safe_test
    
    def test_u_ode(nn, system, T, m, model, data, u, fname, num=100):
        """Test ODE"""
        sensors = np.linspace(0, T, num=m)[:, None]
        sensor_values = u(sensors)
        x = np.linspace(0, T, num=num)[:, None]
        X_test = [np.tile(sensor_values.T, (num, 1)), x]
        y_test = system.eval_s_func(u, x)
        if nn != "opnn":
            X_test = merge_values(X_test)
        y_pred = model.predict(data.transform_inputs(X_test))
        np.savetxt(fname, np.hstack((x, y_test, y_pred)))
        print("L2relative error:", dde.metrics.l2_relative_error(y_test, y_pred))
    
    def ode_system(T):
        """ODE"""
    
        def g(s, u, x):
            # Gravity pendulum
            k = 1
            return [s[1], -k * np.sin(s[0]) + u]
    
        s0 = [0, 0]  # Gravity pendulum
        return ODESystem(g, s0, T)
    
    def run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test):
        # space_test = GRF(1, length_scale=0.1, N=1000, interp="cubic")
    
        X_train, y_train = system.gen_operator_data(space, m, num_train)
        X_test, y_test = system.gen_operator_data(space, m, num_test)
        if nn != "opnn":
            X_train = merge_values(X_train)
            X_test = merge_values(X_test)
    
        # np.savez_compressed("train.npz", X_train0=X_train[0], X_train1=X_train[1], y_train=y_train)
        # np.savez_compressed("test.npz", X_test0=X_test[0], X_test1=X_test[1], y_test=y_test)
        # return
    
        # d = np.load("train.npz")
        # X_train, y_train = (d["X_train0"], d["X_train1"]), d["y_train"]
        # d = np.load("test.npz")
        # X_test, y_test = (d["X_test0"], d["X_test1"]), d["y_test"]
    
        X_test_trim = trim_to_65535(X_test)[0]
        y_test_trim = trim_to_65535(y_test)[0]
        if nn == "opnn":
            data = dde.data.Triple(
                X_train=X_train, y_train=y_train, X_test=X_test_trim, y_test=y_test_trim
            )
        else:
            data = dde.data.DataSet(
                X_train=X_train, y_train=y_train, X_test=X_test_trim, y_test=y_test_trim
            )
    
        model = dde.Model(data, net)
        model.compile("adam", lr=lr, metrics=[mean_squared_error_outlier])
        checker = dde.callbacks.ModelCheckpoint(
            "model/model.ckpt", save_better_only=True, period=1000
        )
        losshistory, train_state = model.train(epochs=epochs, callbacks=[checker])
        print(
            "# Parameters:",
            np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]),
        )
        dde.saveplot(losshistory, train_state, issave=True, isplot=True)
    
        model.restore("model/model.ckpt-" + str(train_state.best_step), verbose=1)
        safe_test(model, data, X_test, y_test)
    
        tests = [
            (lambda x: x, "x.dat"),
            (lambda x: np.sin(np.pi * x), "sinx.dat"),
            (lambda x: np.sin(2 * np.pi * x), "sin2x.dat"),
            (lambda x: x * np.sin(2 * np.pi * x), "xsin2x.dat"),
        ]
        for u, fname in tests:
            if problem == "ode":
                test_u_ode(nn, system, T, m, model, data, u, fname)
    
    def main():
        # Problems:
        # - "lt": Legendre transform
        # - "ode": Antiderivative, Nonlinear ODE, Gravity pendulum
        # - "dr": Diffusion-reaction
        # - "cvc": Advection
        # - "advd": Advection-diffusion
        problem = "ode"
        T = 1
        system = ode_system(T)
    
        # Function space
        # space = FinitePowerSeries(N=100, M=1)
        # space = FiniteChebyshev(N=20, M=1)
        # space = GRF(2, length_scale=0.2, N=2000, interp="cubic")  # "lt"
        space = GRF(1, length_scale=0.2, N=1000, interp="cubic")
        # space = GRF(T, length_scale=0.2, N=1000 * T, interp="cubic")
    
        # Hyperparameters
        m = 100
        num_train = 10000
        num_test = 100000
        lr = 0.001
        epochs = 50000
    
        # Network
        nn = "opnn"
        activation = "relu"
        initializer = "Glorot normal"  # "He normal" or "Glorot normal"
        dim_x = 1 if problem in ["ode", "lt"] else 2
        if nn == "opnn":
            net = dde.maps.DeepONetCartesianProd(
                [m, 40, 40],
                [dim_x, 40, 40],
                activation,
                initializer,
                # use_bias=True,
                # stacked=False,
            )
        elif nn == "fnn":
            net = dde.maps.FNN([m + dim_x] + [100] * 2 + [1], activation, initializer)
        elif nn == "resnet":
            net = dde.maps.ResNet(m + dim_x, 1, 128, 2, activation, initializer)
    
        run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test)
    
    if __name__ == "__main__":
        main()
    
    

    Taking a look briefly at the exports in deepxde.nn.tensorflow I think that the Installation Guide should point to DeepONetCartesianProd and not DeepONet, right? Or am I missing anything? Now even if I make that change, the code is not runnable as is. Do you have any inputs?

    I will keep exploring the library, but it'd be great if you could clarify a bit on how to make the above snippet runnable.

    Thanks!

    opened by bhaveshshrimali 5
  • The data shape of the triplet if the number of input functions of branch nets is more than one?

    The data shape of the triplet if the number of input functions of branch nets is more than one?

    Hello: First of all, thank you very much for your excellent work! I have met a little problem. How to reshape the dataset (or change the code) if the number of input functions of branch nets is more than one? Just like G_phi in this paper("DeepM&Mnet: Inferring the electroconvection multiphysics fields..."), (c+, c-) -->phi. Or like G_rhoNO in this paper("DeepM&Mnet for hypersonics..."), (rho_N2, rho_O2) --> rho_NO. Specifically, what about the data shape of the triplet? Thanks in advance.

    opened by WangYicunZJU 4
  • Could a function of Lp space(p=2) be branch input?

    Could a function of Lp space(p=2) be branch input?

    Dear Professor.Lulu:

    As title. I notice you employ KL expansion in Learning stochastic operators, and use N eigenfunctions scaled by the eigenvalues as the input of branch net.

    My problem is about Sturm-Liouville problem, the solution is also consist of eigenfunctions and eigenvalues.

    Is that mean i should train model for the problem with different number of eigenvalues, and the input of branch net is N orthogonal functions? If there is no random process, the input of the branch net is function u of variable x, the function is sample from Lp space(p=2) .It's OK use the function u(x) instead of Fourier-Bessel expansion?

    opened by xuliang5115 3
  • How to solve 3d ode equations

    How to solve 3d ode equations

    Hi, First of all, thank you very much for your excellent work.

    In case Gravity pendulum, how do I print the predicted value of the variable s2?

    I also try to solve a 3D ode equation set, like ds1/dt=g1(x),ds2/dt=g2(x),ds3/dt=g3(x).It works very well, but only outputs the s1 in test ode function.

    Looking forward to your reply.

    Thank you very much.

    opened by ajogajog 3
  • AttributeError: 'Triple' object has no attribute 'transform_inputs'

    AttributeError: 'Triple' object has no attribute 'transform_inputs'

    Any idea how to resolve the following error? This is for the default problem = "ode" test case. Backend: tensorflow.compat.v1 TensorFlow version: 2.6.2 Thanks.

    Restoring model from model/model.ckpt-37000.ckpt ...

    Traceback (most recent call last): File "deeponet_pde.py", line 285, in main() File "deeponet_pde.py", line 281, in main run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test) File "deeponet_pde.py", line 177, in run safe_test(model, data, X_test, y_test) File "/[HOME-PATH]/tests/deeponet/src/utils.py", line 56, in safe_test y_pred.append(model.predict(data.transform_inputs(X_add))) AttributeError: 'Triple' object has no attribute 'transform_inputs'

    opened by cfd-ai 2
  • Number of parameters in `seq2seq` scales with the length**2 of the sequence

    Number of parameters in `seq2seq` scales with the length**2 of the sequence

    https://github.com/lululxvi/deeponet/blob/44e7b5a2356b0e6e00ad101e897342a2f1e87c0b/seq2seq/learner/nn/seq2seq.py#L58-L59

    This does not seem right, considering DeepONet does not have such kind of dependence.

    https://github.com/lululxvi/deeponet/blob/44e7b5a2356b0e6e00ad101e897342a2f1e87c0b/seq2seq/learner/nn/deeponet.py#L39-L41

    opened by scaomath 1
  • How to use the trained model to predict without training?

    How to use the trained model to predict without training?

    Hello Dr. Lu, Thank you very much for putting forward this DeepONet for our study.I'm very interested in DeepONet . But now I have a problem.I spent a lot of time generating datasets and training on reaction-diffusion equations. I save the training data set and the best model after training. But how can I use this optimal model to predict the solution of the reaction-diffusion equation without training? How can I modify the code in deeponet_pde.py? Thank you very much for your time.

    opened by blackyichao 1
  • Dimension issue in generating operator

    Dimension issue in generating operator "system.py".

    Hi, First of all, thank you very much for your excellent work.

    I tried to test the dimension-match in system.py for the case of simple linear ODE with the following parameters:

    • The space that I choose is Finite Power Series with N = 100 and M = 1
    • m: the number of sensors (So I get the sensors to be an array of m-by-1) Choose m = 50
    • m_u: the number of u's ( the sample u is an array of m_u-by-m) Choose m_u = 60
    • m_y: the number of y's ( an array of m_y-by-1) Choose m_y = 40

    However, I get the dimension for s which value of G(u)(y) is an array of 40-by-1. Should this value have to be an array of (m_u * m_y)-by-1 which is in this case 2400-by-1?

    This is my modified part:

    def gen_operator_data(self,space,m, m_u, m_y):
            print("GENERATING THE DATA...", flush = True)           
            features= space.random(m_u) # build the features (m_u, N) check
            sensors = np.linspace(0, self.T, m)[:, None] # build the sensors (m,1) check 
            u = space.eval_u(features_train, sensors) # get the sample u's (m_u, m) check
            x  = self.T * np.random.rand(m_y)[:,None] # get the sample y's (m_y, 1) check
            s = self.eval_op_space(space, features, x) # get the values s'  
            Xdata = [u, x] 
            Ydata = s
            return Xdata, Ydata
    

    I look forward to hearing from you soon.

    Best Regards.

    opened by phuongle0701 1
  • input data format for OpNN

    input data format for OpNN

    Hi Lu, Thanks for your work. I am trying to make some data for OpNN training. just for clarifying, should the input data be [initial condition, position] and the label be [true value w.r.t. input]?

    opened by ChironJC 1
  • two-dimensional PDE problem of deeponet

    two-dimensional PDE problem of deeponet

    Thank you for your previous answer. The problem of model recovery has been solved. But I have another question.Can we use deeponet to solve the two-dimensional PDE problem? If so, can I input a list of X and Y in the Trunk net?

    opened by blackyichao 0
  • If the input of the trunk net could be set to be different

    If the input of the trunk net could be set to be different

    Hello Dr. Lu,

    I am Bo Chen from SJTU. We had some communication before in online conference, and I have read your code of the article"A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data". It is really wonderful work and I have learnt a lot from it.

    But it can be found that in the cases you offered, the input of the trunk net is always the same distribution for every input of the branch net so that the data can be set by "dde.data.TripleCartesianProd()" with a grid of only one distribution.

    However in my application, the input of the trunk net must be different distribution because of the data limitation of labels. This situation is just
    mentioned in your article as case I or case II ,which means different u have the different locations of ξ.

    image

    I have made same attempts but it seems that the shape of data_trunknet is fixed and hard to be changed. And I also see a type of error "ValueError("DeepONet does not support setting trunk net input.")" in the code even though I did not meet this kind of error in my attempts.

    So I wonder if there is a method of that could feed the input of the trunk net with different distribution to DEEPONET. If possible, could you give me some guidance or a simple demo is better.

    Thanks very much!

    Looking forword to your reply!

    opened by cb-sjtu 7
  • High test loss for nonlinear ODE case

    High test loss for nonlinear ODE case

    I modified both main() and ode_system() as stated in the instructions, but I get a very high test loss. Do I have to modify other functions? I also increased the number of epochs to 10^5 as pointed in the supplementary information of the cited paper (a very interesting work I have to say). Thank you in advance.

    Additional information: Modified lines (all in src/deeponet_pde.py): line 104: uncommented after having commented line 102 line 231: be sure to have problem="ode" line 260: increased epochs to 100000

    Example of output:

    Step      Train loss    Test loss     Test metric   
    0         [3.68e-01]    [1.74e+25]    [3.55e-01]    
    1000      [3.08e-03]    [1.74e+25]    [2.05e-03]    
    2000      [8.55e-04]    [1.74e+25]    [8.00e-04]    
    3000      [3.57e-04]    [1.74e+25]    [5.24e-04]    
    4000      [2.06e-04]    [1.74e+25]    [3.58e-04]    
    5000      [1.65e-04]    [1.74e+25]    [3.22e-04]    
    6000      [1.43e-04]    [1.74e+25]    [2.83e-04]    
    7000      [1.28e-04]    [1.74e+25]    [2.47e-04]    
    8000      [1.01e-04]    [1.74e+25]    [2.26e-04]    
    9000      [8.53e-05]    [1.74e+25]    [2.00e-04]    
    10000     [7.95e-05]    [1.74e+25]    [1.87e-04]    
    11000     [7.90e-05]    [1.74e+25]    [1.80e-04]    
    12000     [9.09e-05]    [1.74e+25]    [1.88e-04]    
    13000     [9.10e-05]    [1.74e+25]    [1.69e-04]    
    14000     [5.61e-05]    [1.74e+25]    [1.45e-04]    
    15000     [5.24e-05]    [1.74e+25]    [1.40e-04]    
    16000     [5.50e-05]    [1.74e+25]    [1.44e-04]    
    17000     [5.00e-05]    [1.74e+25]    [1.33e-04]    
    18000     [5.21e-05]    [1.74e+25]    [1.39e-04]    
    19000     [4.54e-05]    [1.74e+25]    [1.31e-04]    
    20000     [1.13e-04]    [1.74e+25]    [1.78e-04]    
    21000     [4.39e-05]    [1.74e+25]    [1.31e-04]    
    22000     [5.68e-05]    [1.74e+25]    [1.45e-04]    
    23000     [4.37e-05]    [1.74e+25]    [1.31e-04]    
    24000     [4.18e-05]    [1.74e+25]    [1.28e-04]    
    25000     [4.00e-05]    [1.74e+25]    [1.28e-04]    
    26000     [6.98e-05]    [1.74e+25]    [1.55e-04]    
    27000     [7.45e-05]    [1.74e+25]    [1.58e-04]    
    28000     [4.10e-05]    [1.74e+25]    [1.22e-04]    
    29000     [3.62e-05]    [1.74e+25]    [1.20e-04]    
    30000     [5.16e-05]    [1.74e+25]    [1.36e-04]    
    31000     [3.60e-05]    [1.74e+25]    [1.19e-04]    
    32000     [3.82e-05]    [1.74e+25]    [1.20e-04]    
    33000     [3.33e-05]    [1.74e+25]    [1.14e-04]    
    34000     [3.36e-05]    [1.74e+25]    [1.14e-04]    
    35000     [3.24e-05]    [1.74e+25]    [1.11e-04]    
    36000     [3.15e-05]    [1.74e+25]    [1.12e-04]    
    37000     [3.14e-05]    [1.74e+25]    [1.08e-04]    
    38000     [3.78e-05]    [1.74e+25]    [1.18e-04]    
    39000     [3.40e-05]    [1.74e+25]    [1.09e-04]    
    40000     [4.34e-05]    [1.74e+25]    [1.14e-04]    
    41000     [3.58e-05]    [1.74e+25]    [1.09e-04]    
    42000     [2.89e-05]    [1.74e+25]    [1.04e-04]    
    43000     [2.99e-05]    [1.74e+25]    [1.09e-04]    
    44000     [4.13e-05]    [1.74e+25]    [1.10e-04]    
    45000     [2.72e-05]    [1.74e+25]    [1.03e-04]    
    46000     [2.71e-05]    [1.74e+25]    [1.03e-04]    
    47000     [2.88e-05]    [1.74e+25]    [1.02e-04]    
    48000     [5.22e-05]    [1.74e+25]    [1.33e-04]    
    49000     [2.55e-05]    [1.74e+25]    [9.98e-05]    
    50000     [2.92e-05]    [1.74e+25]    [1.01e-04]    
    51000     [2.63e-05]    [1.74e+25]    [9.88e-05]    
    52000     [2.39e-05]    [1.74e+25]    [9.90e-05]    
    53000     [2.76e-05]    [1.74e+25]    [1.02e-04]    
    54000     [3.15e-05]    [1.74e+25]    [9.99e-05]    
    55000     [3.11e-05]    [1.74e+25]    [1.11e-04]    
    56000     [2.47e-05]    [1.74e+25]    [9.72e-05]    
    57000     [3.14e-05]    [1.74e+25]    [1.08e-04]    
    58000     [3.34e-05]    [1.74e+25]    [1.01e-04]    
    59000     [2.54e-05]    [1.74e+25]    [9.68e-05]    
    60000     [3.11e-05]    [1.74e+25]    [9.88e-05]    
    61000     [4.05e-05]    [1.74e+25]    [1.20e-04]    
    62000     [4.36e-05]    [1.74e+25]    [1.22e-04]    
    63000     [2.21e-05]    [1.74e+25]    [9.88e-05]    
    64000     [2.31e-05]    [1.74e+25]    [9.72e-05]    
    65000     [3.04e-05]    [1.74e+25]    [9.75e-05]    
    66000     [2.57e-05]    [1.74e+25]    [9.81e-05]    
    67000     [2.77e-05]    [1.74e+25]    [9.60e-05]    
    68000     [2.22e-05]    [1.74e+25]    [9.49e-05]    
    69000     [2.21e-05]    [1.74e+25]    [9.86e-05]    
    70000     [2.57e-05]    [1.74e+25]    [9.89e-05]    
    71000     [2.21e-05]    [1.74e+25]    [9.48e-05]    
    72000     [2.11e-05]    [1.74e+25]    [9.38e-05]    
    73000     [2.57e-05]    [1.74e+25]    [1.02e-04]    
    74000     [3.00e-05]    [1.74e+25]    [1.09e-04]    
    75000     [2.15e-05]    [1.74e+25]    [9.34e-05]    
    76000     [2.06e-05]    [1.74e+25]    [9.62e-05]    
    77000     [3.68e-05]    [1.74e+25]    [1.16e-04]    
    78000     [1.95e-05]    [1.74e+25]    [9.37e-05]    
    79000     [2.38e-05]    [1.74e+25]    [9.98e-05]    
    80000     [6.12e-05]    [1.74e+25]    [1.42e-04]    
    81000     [2.97e-05]    [1.74e+25]    [1.08e-04]    
    82000     [2.12e-05]    [1.74e+25]    [9.13e-05]    
    83000     [2.11e-05]    [1.74e+25]    [9.13e-05]    
    84000     [1.92e-05]    [1.74e+25]    [9.08e-05]    
    85000     [4.75e-05]    [1.74e+25]    [1.28e-04]    
    86000     [6.35e-05]    [1.74e+25]    [1.44e-04]    
    87000     [1.88e-05]    [1.74e+25]    [9.50e-05]    
    88000     [1.85e-05]    [1.74e+25]    [9.09e-05]    
    89000     [1.74e-05]    [1.74e+25]    [9.12e-05]    
    90000     [1.75e-05]    [1.74e+25]    [9.28e-05]    
    91000     [3.79e-05]    [1.74e+25]    [1.05e-04]    
    92000     [1.98e-05]    [1.74e+25]    [9.06e-05]    
    93000     [2.04e-05]    [1.74e+25]    [9.09e-05]    
    94000     [2.14e-05]    [1.74e+25]    [9.92e-05]    
    95000     [1.70e-05]    [1.74e+25]    [9.22e-05]    
    96000     [3.40e-05]    [1.74e+25]    [9.47e-05]    
    97000     [1.80e-05]    [1.74e+25]    [9.49e-05]    
    98000     [1.65e-05]    [1.74e+25]    [9.20e-05]    
    99000     [1.67e-05]    [1.74e+25]    [8.97e-05]    
    100000    [1.65e-05]    [1.74e+25]    [9.20e-05]    
    
    Best model at step 98000:
      train loss: 1.65e-05
      test loss: 1.74e+25
      test metric: [9.20e-05]
    
    
    opened by edoardo100 1
  • AttributeError: 'Triple' object has no attribute 'transform_inputs'

    AttributeError: 'Triple' object has no attribute 'transform_inputs'

    model.restore("model/model.ckpt-" + str(train_state.best_step) + ".ckpt", verbose=1) #model.restore("model/model.ckpt-" + str(train_state.best_step), verbose=1) safe_test(model, data, X_test, y_test)

    Saving loss history to D:\LULU\deeponet-master1\deeponet-master\src\loss.dat ... Error: The network has multiple inputs, and saving such result han't been implemented. Error: The network has multiple inputs, and plotting such result han't been implemented. Restoring model from model/model.ckpt-5000.ckpt ...

    Traceback (most recent call last): File "D:/LULU/deeponet-master1/deeponet-master/src/deeponet_pde.py", line 285, in main() File "D:\LULU/deeponet-master1/deeponet-master/src/deeponet_pde.py", line 281, in main run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test) File "D:\LULU/deeponet-master1/deeponet-master/src/deeponet_pde.py", line 177, in run safe_test(model, data, X_test, y_test) File "D:\LULU\deeponet-master1\deeponet-master\src\utils.py", line 56, in safe_test y_pred.append(model.predict(data.transform_inputs(X_add))) AttributeError: 'Triple' object has no attribute 'transform_inputs'

    进程已结束,退出代码1

    opened by jinjunyonggzh 1
  • How DeepONet provides multiple outputs

    How DeepONet provides multiple outputs

    Professor Lu: For a complex output problem, I divided into two networks with the same structure and hyperparameters for training. The previous issue has been resolved. So, i need put model1 and model2 in two files. I use step method to reduce the dimension of Trunk net, the input of each step is the output of the two networks of the previous step. So there is a bug. I think it is necessary to train a network with two outputs at the same time. May i ask some relevant examples so i can change my code?

    opened by xuliang5115 2
  • Questions about the difference PINN and DeepXDE

    Questions about the difference PINN and DeepXDE

    Dear Prof. Lu, Thanks for your time for looking at this question.

    1. Could you tell me is the DeepXDE is one type of PINN? But I didn't find any code about using control equation to describe the loss in DeepXDE.
    2. Currently, I am solving a equations contained possion and transport equations. I want to obtain the dynamic process of the electron density change. Should I use the (x,y,t) and (E,ne,np,nn) as the input and output, respectively. Can the DeepXDE predict the extra time results without trained time data as input.
    opened by pengcz 1
  • UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd5 in position 38: invalid continuation byte

    UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd5 in position 38: invalid continuation byte

    Hello, professor. I have some porblem.What's the way you coded? I have the following error while running the code.

    Traceback (most recent call last): File "E:/DeepONet/deeponet-master/src/deeponet_pde.py", line 285, in main() File "E:/DeepONet/deeponet-master/src/deeponet_pde.py", line 281, in main run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test) File "E:/DeepONet/deeponet-master/src/deeponet_pde.py", line 176, in run model.restore("model/model.ckpt-" + str(train_state.best_step), verbose=1) File "D:\ProgramData\Anaconda3\envs\donlu\lib\site-packages\deepxde\model.py", line 377, in restore self.saver.restore(self.sess, save_path) File "D:\ProgramData\Anaconda3\envs\donlu\lib\site-packages\tensorflow\python\training\saver.py", line 1289, in restore if not checkpoint_management.checkpoint_exists_internal(checkpoint_prefix): File "D:\ProgramData\Anaconda3\envs\donlu\lib\site-packages\tensorflow\python\training\checkpoint_management.py", line 383, in checkpoint_exists_internal if file_io.get_matching_files(pathname): File "D:\ProgramData\Anaconda3\envs\donlu\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 350, in get_matching_files return get_matching_files_v2(filename) File "D:\ProgramData\Anaconda3\envs\donlu\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 371, in get_matching_files_v2 compat.as_bytes(pattern)) UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd5 in position 38: invalid continuation byte

    Process finished with exit code 1

    opened by DaJiang7 2
Releases(v1.0.0)
Owner
Lu Lu
Applied Mathematics Instructor, Massachusetts Institute of Technology
Lu Lu
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022