CTC segmentation python package

Overview

CTC segmentation

CTC segmentation can be used to find utterances alignments within large audio files.

Installation

  • With pip:
pip install ctc-segmentation
  • From the Arch Linux AUR as python-ctc-segmentation-git using your favourite AUR helper.

  • From source:

git clone https://github.com/lumaku/ctc-segmentation
cd ctc-segmentation
cythonize -3 ctc_segmentation/ctc_segmentation_dyn.pyx
python setup.py build
python setup.py install --optimize=1 --skip-build

Example Code

  1. prepare_text filters characters not in the dictionary, and generates the character matrix.
  2. ctc_segmentation computes character-wise alignments from CTC activations of an already trained CTC-based network.
  3. determine_utterance_segments converts char-wise alignments to utterance-wise alignments.
  4. In a post-processing step, segments may be filtered by their confidence value.

This code is from asr_align.py of the ESPnet toolkit:

from ctc_segmentation import ctc_segmentation
from ctc_segmentation import CtcSegmentationParameters
from ctc_segmentation import determine_utterance_segments
from ctc_segmentation import prepare_text

# ...

config = CtcSegmentationParameters()
char_list = train_args.char_list

for idx, name in enumerate(js.keys(), 1):
    logging.info("(%d/%d) Aligning " + name, idx, len(js.keys()))
    batch = [(name, js[name])]
    feat, label = load_inputs_and_targets(batch)
    feat = feat[0]
    with torch.no_grad():
        # Encode input frames
        enc_output = model.encode(torch.as_tensor(feat).to(device)).unsqueeze(0)
        # Apply ctc layer to obtain log character probabilities
        lpz = model.ctc.log_softmax(enc_output)[0].cpu().numpy()
    # Prepare the text for aligning
    ground_truth_mat, utt_begin_indices = prepare_text(
        config, text[name], char_list
    )
    # Align using CTC segmentation
    timings, char_probs, state_list = ctc_segmentation(
        config, lpz, ground_truth_mat
    )
    # Obtain list of utterances with time intervals and confidence score
    segments = determine_utterance_segments(
        config, utt_begin_indices, char_probs, timings, text[name]
    )
    # Write to "segments" file
    for i, boundary in enumerate(segments):
        utt_segment = (
            f"{segment_names[name][i]} {name} {boundary[0]:.2f}"
            f" {boundary[1]:.2f} {boundary[2]:.9f}\n"
        )
        args.output.write(utt_segment)

After the segments are written to a segments file, they can be filtered with the parameter min_confidence_score. This is minium confidence score in log space as described in the paper. Utterances with a low confidence score are discarded. This parameter may need adjustment depending on dataset, ASR model and language. For the german ASR model, a value of -1.5 worked very well, but for TEDlium, a lower value of about -5.0 seemed more practical.

awk -v ms=${min_confidence_score} '{ if ($5 > ms) {print} }' ${unfiltered} > ${filtered}

Parameters

There are several notable parameters to adjust the working of the algorithm:

  • min_window_size: Minimum window size considered for a single utterance. The current default value should be OK in most cases.

  • Localization: The character set is taken from the model dict, i.e., usually are generated with SentencePiece. An ASR model trained in the corresponding language and character set is needed. For asian languages, no changes to the CTC segmentation parameters should be necessary. One exception: If the character set contains any punctuation characters, "#", or the Greek char "ε", adapt the setting in an instance of CtcSegmentationParameters in segmentation.py.

  • CtcSegmentationParameters includes a blank character. Copy over the Blank character from the dictionary to the configuration, if in the model dictionary e.g. "<blank>" instead of the default "_" is used. If the Blank in the configuration and in the dictionary mismatch, the algorithm raises an IndexError at backtracking.

  • If replace_spaces_with_blanks is True, then spaces in the ground truth sequence are replaces by blanks. This option is enabled by default and improves compability with dictionaries with unknown space characters.

  • To align utterances with longer unkown audio sections between them, use blank_transition_cost_zero (default: False). With this option, the stay transition in the blank state is free. A transition to the next character is only consumed if the probability to switch is higher. In this way, more time steps can be skipped between utterances. Caution: in combination with replace_spaces_with_blanks == True, this may lead to misaligned segments.

Two parameters are needed to correctly map the frame indices to a time stamp in seconds:

  • subsampling_factor: If the encoder sub-samples its input, the number of frames at the CTC layer is reduced by this factor. A BLSTMP encoder with subsampling 1_2_2_1_1 has a subsampling factor of 4.
  • frame_duration_ms: This is the non-overlapping duration of a single frame in milliseconds (the inverse of frames per millisecond). Note: if fs is set, then frame_duration_ms is ignored.

But not all ASR systems have subsampling. If you want to directly use the sampling rate:

  1. For a given sample rate, say, 16kHz, set fs=16000.
  2. Then set the subsampling_factor to the number of sample points on a single CTC-encoded frame. In default ASR systems, this can be calculated from the hop length of the windowing times encoder subsampling factor. For example, if the hop length is 128, and the subsampling factor in the encoder is 4, then set subsampling_factor=512.

How it works

1. Forward propagation

Character probabilites from each time step are obtained from a CTC-based network. With these, transition probabilities are mapped into a trellis diagram. To account for preambles or unrelated segments in audio files, the transition cost are set to zero for the start-of-sentence or blank token.

Forward trellis

2. Backtracking

Starting from the time step with the highest probability for the last character, backtracking determines the most probable path of characters through all time steps.

Backward path

3. Confidence score

As this method generates a probability for each aligned character, a confidence score for each utterance can be derived. For example, if a word within an utterance is missing, this value is low.

Confidence score

The confidence score helps to detect and filter-out bad utterances.

Reference

The full paper can be found in the preprint https://arxiv.org/abs/2007.09127 or published at https://doi.org/10.1007/978-3-030-60276-5_27. To cite this work:

@InProceedings{ctcsegmentation,
author="K{\"u}rzinger, Ludwig
and Winkelbauer, Dominik
and Li, Lujun
and Watzel, Tobias
and Rigoll, Gerhard",
editor="Karpov, Alexey
and Potapova, Rodmonga",
title="CTC-Segmentation of Large Corpora for German End-to-End Speech Recognition",
booktitle="Speech and Computer",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="267--278",
abstract="Recent end-to-end Automatic Speech Recognition (ASR) systems demonstrated the ability to outperform conventional hybrid DNN/HMM ASR. Aside from architectural improvements in those systems, those models grew in terms of depth, parameters and model capacity. However, these models also require more training data to achieve comparable performance.",
isbn="978-3-030-60276-5"
}
Owner
Ludwig Kürzinger
Ludwig Kürzinger
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022