PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

Overview

End-to-End Coreference Resolution with Different Higher-Order Inference Methods

This repository contains the implementation of the paper: Revealing the Myth of Higher-Order Inference in Coreference Resolution.

Architecture

The basic end-to-end coreference model is a PyTorch re-implementation based on the TensorFlow model following similar preprocessing (see this repository).

There are four higher-order inference (HOI) methods experimented: Attended Antecedent, Entity Equalization, Span Clustering, and Cluster Merging. All are included here except for Entity Equalization which is experimented in the equivalent TensorFlow environment (see this separate repository).

Files:

Basic Setup

Set up environment and data for training and evaluation:

  • Install Python3 dependencies: pip install -r requirements.txt
  • Create a directory for data that will contain all data files, models and log files; set data_dir = /path/to/data/dir in experiments.conf
  • Prepare dataset (requiring OntoNotes 5.0 corpus): ./setup_data.sh /path/to/ontonotes /path/to/data/dir

For SpanBERT, download the pretrained weights from this repository, and rename it /path/to/data/dir/spanbert_base or /path/to/data/dir/spanbert_large accordingly.

Evaluation

Provided trained models:

The name of each directory corresponds with a configuration in experiments.conf. Each directory has two trained models inside.

If you want to use the official evaluator, download and unzip conll 2012 scorer under this directory.

Evaluate a model on the dev/test set:

  • Download the corresponding model directory and unzip it under data_dir
  • python evaluate.py [config] [model_id] [gpu_id]
    • e.g. Attended Antecedent:python evaluate.py train_spanbert_large_ml0_d2 May08_12-38-29_58000 0

Prediction

Prediction on custom input: see python predict.py -h

  • Interactive user input: python predict.py --config_name=[config] --model_identifier=[model_id] --gpu_id=[gpu_id]
    • E.g. python predict.py --config_name=train_spanbert_large_ml0_d1 --model_identifier=May10_03-28-49_54000 --gpu_id=0
  • Input from file (jsonlines file of this format): python predict.py --config_name=[config] --model_identifier=[model_id] --gpu_id=[gpu_id] --jsonlines_path=[input_path] --output_path=[output_path]

Training

python run.py [config] [gpu_id]

  • [config] can be any configuration in experiments.conf
  • Log file will be saved at your_data_dir/[config]/log_XXX.txt
  • Models will be saved at your_data_dir/[config]/model_XXX.bin
  • Tensorboard is available at your_data_dir/tensorboard

Configurations

Some important configurations in experiments.conf:

  • data_dir: the full path to the directory containing dataset, models, log files
  • coref_depth and higher_order: controlling the higher-order inference module
  • bert_pretrained_name_or_path: the name/path of the pretrained BERT model (HuggingFace BERT models)
  • max_training_sentences: the maximum segments to use when document is too long; for BERT-Large and SpanBERT-Large, set to 3 for 32GB GPU or 2 for 24GB GPU

Citation

@inproceedings{xu-choi-2020-revealing,
    title = "Revealing the Myth of Higher-Order Inference in Coreference Resolution",
    author = "Xu, Liyan  and  Choi, Jinho D.",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.686",
    pages = "8527--8533"
}
Owner
Liyan
PhD student at Emory University (NLP Lab).
Liyan
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Good Classification Measures and How to Find Them

Good Classification Measures and How to Find Them This repository contains supplementary materials for the paper "Good Classification Measures and How

Yandex Research 7 Nov 13, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021