Wav2Vec for speech recognition, classification, and audio classification

Overview

Soxan

در زبان پارسی به نام سخن

This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your research. In the following, I'll show you how to train speech tasks in your dataset and how to use the pretrained models.

How to train

I'm just at the beginning of all the possible speech tasks. To start, we continue the training script with the speech emotion recognition problem.

Training - Notebook

Task Notebook
Speech Emotion Recognition (Wav2Vec 2.0) Open In Colab
Speech Emotion Recognition (Hubert) Open In Colab
Audio Classification (Wav2Vec 2.0) Open In Colab

Training - CMD

python3 run_wav2vec_clf.py \
    --pooling_mode="mean" \
    --model_name_or_path="lighteternal/wav2vec2-large-xlsr-53-greek" \
    --model_mode="wav2vec2" \ # or you can use hubert
    --output_dir=/path/to/output \
    --cache_dir=/path/to/cache/ \
    --train_file=/path/to/train.csv \
    --validation_file=/path/to/dev.csv \
    --test_file=/path/to/test.csv \
    --per_device_train_batch_size=4 \
    --per_device_eval_batch_size=4 \
    --gradient_accumulation_steps=2 \
    --learning_rate=1e-4 \
    --num_train_epochs=5.0 \
    --evaluation_strategy="steps"\
    --save_steps=100 \
    --eval_steps=100 \
    --logging_steps=100 \
    --save_total_limit=2 \
    --do_eval \
    --do_train \
    --fp16 \
    --freeze_feature_extractor

Prediction

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification

model_name_or_path = "path/to/your-pretrained-model"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate

# for wav2vec
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)

# for hubert
model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device)


def speech_file_to_array_fn(path, sampling_rate):
    speech_array, _sampling_rate = torchaudio.load(path)
    resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate)
    speech = resampler(speech_array).squeeze().numpy()
    return speech


def predict(path, sampling_rate):
    speech = speech_file_to_array_fn(path, sampling_rate)
    inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
    inputs = {key: inputs[key].to(device) for key in inputs}

    with torch.no_grad():
        logits = model(**inputs).logits

    scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
    outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in
               enumerate(scores)]
    return outputs


path = "/path/to/disgust.wav"
outputs = predict(path, sampling_rate)    

Output:

[
    {'Emotion': 'anger', 'Score': '0.0%'},
    {'Emotion': 'disgust', 'Score': '99.2%'},
    {'Emotion': 'fear', 'Score': '0.1%'},
    {'Emotion': 'happiness', 'Score': '0.3%'},
    {'Emotion': 'sadness', 'Score': '0.5%'}
]

Demos

Demo Link
Speech To Text With Emotion Recognition (Persian) - soon huggingface.co/spaces/m3hrdadfi/speech-text-emotion

Models

Dataset Model
ShEMO: a large-scale validated database for Persian speech emotion detection m3hrdadfi/wav2vec2-xlsr-persian-speech-emotion-recognition
ShEMO: a large-scale validated database for Persian speech emotion detection m3hrdadfi/hubert-base-persian-speech-emotion-recognition
ShEMO: a large-scale validated database for Persian speech emotion detection m3hrdadfi/hubert-base-persian-speech-gender-recognition
Speech Emotion Recognition (Greek) (AESDD) m3hrdadfi/hubert-large-greek-speech-emotion-recognition
Speech Emotion Recognition (Greek) (AESDD) m3hrdadfi/hubert-base-greek-speech-emotion-recognition
Speech Emotion Recognition (Greek) (AESDD) m3hrdadfi/wav2vec2-xlsr-greek-speech-emotion-recognition
Eating Sound Collection m3hrdadfi/wav2vec2-base-100k-eating-sound-collection
GTZAN Dataset - Music Genre Classification m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres
Owner
Mehrdad Farahani
Researcher, NLP Engineer, Deep Learning Engineer φ
Mehrdad Farahani
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022