The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo

Overview

Subformer

This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while reducing parameters in generative Transformers from 25% ~ 70%. The Subformer consists of the following two techniques:

  1. Sandwich-style parameter sharing, in which we share all the layers in a block except the first and last. This allows us the use the central shared layers --"sandwich module" -- as a large representation learner (similar to BERT vs ALBERT) while the input and output model layers are able to focus on more specific representations for token prediction/generation while maintaining performance.
  2. For our sequence to sequence tasks, we also introduce SAFE (self-attentive factorized embeddings), which help us reduce embedding parameters significantly, while still retaining performance.

If you used this code or found our work useful, please cite:

@inproceedings{reid2021subformer,
    title = {{S}ubformer: {E}xploring {W}eight {S}haring for {P}arameter {E}fficiency in {G}enerative {T}ransformers},
    author = {Machel Reid and Edison Marrese-Taylor and Yutaka Matsuo},
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
}

Requirements and Installation

(As this code is based on fairseq, some installation instructions are taken straight from their README)

  • PyTorch version >= 1.5.0
  • Python version >= 3.6
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • To install and develop locally:
git clone https://github.com/machelreid/subformer
cd subformer
pip install --e ./

# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./
  • For faster training install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
  • For large datasets install PyArrow: pip install pyarrow
  • If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run .

Training

Machine Translation

python train.py $DATA_BIN --arch transformer_wmt_en_de \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --lr 5e-4 \
    --warmup-init-lr 1e-7 --stop-min-lr 1e-9 --lr-scheduler inverse_sqrt --warmup-updates 10000 \
    --optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-6 --task translation \
    --max-tokens 8192 --weight-decay 0.01 --dropout 0.2 --encoder-layers 6 --encoder-embed-dim 512 \
    --decoder-layers 6 --decoder-embed-dim 512 --fp16 --max-source-positions 10000 \
    --max-target-positions 10000 --max-update 200000 --seed 1 \
    --save-dir $CHECKPOINT_DIR --share-all-embeddings \
    --share-encoder-parameters-sandwich --share-decoder-parameters-sandwich \ #for sandwich-style parameter sharing
    --reduction-dim 320 #for SAFE embeddings

Generation

python generate.py --path $CHECKPOINT --gen-subset $SPLIT --beam 5 --lenpen $LENPEN --batch-size 400 --remove-bpe

CNN-DM Summarization

fairseq-train $DATA_BIN \
   --share-decoder-input-output-embed \
   --max-update 30000 \
   --optimizer adam --adam-betas '(0.9, 0.98)' --skip-invalid-size-inputs-valid-test \
   --lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 10000 --lr 0.0005 \
   --stop-min-lr 1e-09 --clip-norm 0.1 --dropout 0.3 --weight-decay 0.0 \
   --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --update-freq 7 --attention-dropout 0.2 \
   --max-tokens 8192 --arch transformer_wmt_en_de --seed 1 --warmup-init-lr 1e-7 \
   --source-lang source_bpe --target-lang target_bpe --save-dir $CHECKPOINT_DIR --no-epoch-checkpoints --keep-best-checkpoints 10 --truncate-source --max-source-positions 512 --share-encoder-parameters-sandwich --share-decoder-parameters-sandwich --sandwich-embed-dim 1024 --sandwich-ffn-embed-dim 3072 --reduction-dim 256

Generation

fairseq-generate $DATA_BIN --task translation --gen-subset $SPLIT --batch-size 32 --path $CHECKPOINT --remove-bpe  --min-len 55 --beam 5 --max-len-b 140 --no-repeat-ngram-size 3 --lenpen $LENPEN -s source_bpe -t target_bpe --truncate-source --max-source-positions 512

Note that the min,max len parameters can be tuned for better performance

For post processing and ROUGE calculation feel free to take a look at this.

Citation

Please cite as:

@inproceedings{reid2021subformer,
    title = {{S}ubformer: {E}xploring {W}eight {S}haring for {P}arameter {E}fficiency in {G}enerative {T}ransformers},
    author = {Machel Reid and Edison Marrese-Taylor and Yutaka Matsuo},
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
}
Owner
Machel Reid
Researcher at University of Tokyo. Research Intern at CMU. Masason Foundation Scholar. Won the Rakuten Hackathon 2018.
Machel Reid
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings

MCSE: Multimodal Contrastive Learning of Sentence Embeddings This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multi

Saarland University Spoken Language Systems Group 39 Nov 15, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

18 Nov 17, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
Simple NLP based project without any use of AI

Simple NLP based project without any use of AI

Shripad Rao 1 Apr 26, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023