BASH - Biomechanical Animated Skinned Human

Overview

BASH - Biomechanical Animated Skinned Human

BASH Teaser

Schleicher, R., Nitschke, M., Martschinke, J., Stamminger, M., Eskofier, B., Klucken, J., Koelewijn, A. (2021). BASH: Biomechanical Animated Skinned Human for Visualization of Kinematics and Muscle Activity. 16th International Conference on Computer Graphics Theory and Applications (GRAPP), 2021.

https://www.scitepress.org/Papers/2021/102106/102106.pdf

BASH Model

Converting a OpenSim [1] format file (.osim + .mot) to the SCAPE [2] framework. Visualization tool to inspect the animated model in 3D.

Processing Pipeline

Input Model: OpenSim

  • Parser
  • Model (.osim)
  • Scale factors (.xml)
  • Motion (.mot)
  • Muscle Activation (.sto)

Baseline model Design for a new Musculoskeltal Model (in Blender)

  • modeling
  • import SCAPE mesh
  • rig and skin skeleton (same hierarchy as musucloskeletal model)
  • place markers (same set as musculoskeletal model)
  • export model (.dae reorders vertices...) => mesh, markers & weights files

Scaling

  • performed automatically, applied correctly to the hierachy, applied in bone space
  • use .xml file or my estimation (defined in settings.h)
  • scaled vs generic in ./data/cache/mesh/

Initial Pose Matching

  • computed automatically using OpenSim's IK solver
  • cached in ./data/cache/mapping for debugging the resulting .mot file

Pose Transformation

  • calculated beforehand (needed the mesh for projection to SCAPE)
  • uses pose mapping projection and kinematic transformations, applied in world space
  • cached in ./data/cache/mesh/

Projection into SCAPE space

  • projection to scape space (only relative rotations)
  • rigid alignment to adjust translation
  • cached in ./data/cache/mesh/

Visualization of Muscle Activation

  • computed at run-time
  • color coding in Fragment Shader

Settings

  • settings.h for keyshortcuts, constants and other configurations

Project structure and dependencies

  • SCAPE: The main Windows-Application that handles the model conversion and visualization

  • External dependencies (minimum required version):

  • SFML (>= 2.5.1)

  • glew (>= 2.1.0)

  • glm (>= 0.9.9.5)

  • Assimp (>= 3.0.0)

  • OpenSim and SimbodyTK (>= 4.0)

  • libRender: A custom framework used for creating a window and render a 3D-application in it

  • External dependencies (minimum required version):

  • SFML (>= 2.5.1)

  • glew (>= 2.1.0)

  • glm (>= 0.9.9.5)

  • libSCAPE: The SCAPE framework to load the SCAPE binary data and create a mesh in pose and shape

  • External dependencies (minimum required version):

  • SuitSparse package: suitsparse + amd + umfpack (>= 5.1.2)

  • GSL (>= 2.4)

SCAPE Framework

  • Implementation in ´SCAPE.h´
  • Model parameters
  • Pose: Rotation vector for each part ('numParts = 16') in three-dimensional twist subvectors (the axis is determined by the vector's direction and the angle is determined by the vector's magnitude.
  • Shape: Scalar PCA coefficients ('numVecs = 20') to modify body proportions like height, size and gender etc.

Building platform x64

  • OpenSim can only be built in 64bit. So we have to use the x64 Platform in order to use their API.
  • Include and link all dependencies in x64.
  • Build the SCAPE framework in x64.
  • Define the flag '#define SAVE_MATRIX 0' once to write new binaries in the correct format (64bit wording).
  • The folder 'data\default_scape_data' should contain the binary files: 'matrixDGrad.bin', 'SCAPE_DGrad_numeric.bin', 'SCAPE_DGrad_symbolic.bin', 'SCAPE_pose.bin'.

Example result

OpenSim's visualization compared to our visualization (data set: straight running [3]): Example

References

[1] Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia,C. L., Dunne, J. J., Ong, C. F., DeMers, M. S., Ra-jagopal, A., Millard, M., et al. (2018). OpenSim: Sim-ulating musculoskeletal dynamics and neuromuscularcontrol to study human and animal movement. PLoSComputational Biology, 14(7):1–20.

[2] Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers,J., and Davis, J. (2005). SCAPE: Shape Completionand Animation of People. InACM Transactions onGraphics, volume 24, pages 408–416.

[3] Nitschke, M., Dorschky, E., Heinrich, D., Schlarb, H., Eskofier, B. M., Koelewijn, A. D., and Van den Bogert, A. J. (2020). Efficient trajectory optimization for curved running using a 3D musculoskeletal model with implicit dynamics. Scientific Reports, 10(17655).

Owner
Machine Learning and Data Analytics Lab FAU
Public projects of the Machine Learning and Data Analytics Lab at the Friedrich-Alexander-University Erlangen-Nürnberg
Machine Learning and Data Analytics Lab FAU
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022