๐Ÿš€ An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Overview

Creating an End-to-End ML Application w/ PyTorch

๐Ÿš€ This project was created using the Made With ML boilerplate template. Check it out to start creating your own ML applications.

Overview

  • Why do we need to build end-to-end applications?
    • By building e2e applications, you ensure that your code is organized, tested, testable / interactive and easy to scale-up / assimilate with larger pipelines.
    • If you're someone in industry and are looking to showcase your work to future employers, it's no longer enough to just have code on Jupyter notebooks. ML is just another tool and you need to show that you can use it in conjunction with all the other software engineering disciplines (frontend, backend, devops, etc.). The perfect way to do this is to create end-to-end applications that utilize all these different facets.
  • What are the components of an end-to-end ML application?
    1. Basic experimentation in Jupyter notebooks.
      • We aren't going to completely dismiss notebooks because they're still great tool to iterate quickly. Check out the notebook for our task here โ†’ notebook
    2. Moving our code from notebooks to organized scripts.
      • Once we did some basic development (on downsized datasets), we want to move our code to scripts to reduce technical debt. We'll create functions and classes for different parts of the pipeline (data, model, train, etc.) so we can easily make them robust for different circumstances.
      • We used our own boilerplate to organize our code before moving any of the code from our notebook.
    3. Proper logging and testing for you code.
      • Log key events (preprocessing, training performance, etc.) using the built-in logging library. Also use logging to see new inputs and outputs during prediction to catch issues, etc.
      • You also need to properly test your code. You will add and update your functions and their tests over time but it's important to at least start testing crucial pieces of your code from the beginning. These typically include sanity checks with preprocessing and modeling functions to catch issues early. There are many options for testing Python code but we'll use pytest here.
    4. Experiment tracking.
      • We use Weights and Biases (WandB), where you can easily track all the metrics of your experiment, config files, performance details, etc. for free. Check out the Dashboards page for an overview and tutorials.
      • When you're developing your models, start with simple approaches first and then slowly add complexity. You should clearly document (README, articles and WandB reports) and save your progression from simple to more complex models so your audience can see the improvements. The ability to write well and document your thinking process is a core skill to have in research and industry.
      • WandB also has free tools for hyperparameter tuning (Sweeps) and for data/pipeline/model management (Artifacts).
    5. Robust prediction pipelines.
      • When you actually deploy an ML application for the real world to use, we don't just look at the softmax scores.
      • Before even doing any forward pass, we need to analyze the input and deem if it's within the manifold of the training data. If it's something new (or adversarial) we shouldn't send it down the ML pipeline because the results cannot be trusted.
      • During processes like proprocessing, we need to constantly observe what the model received. For example, if the input has a bunch of unknown tokens than we need to flag the prediction because it may not be reliable.
      • After the forward pass we need to do tests on the model's output as well. If the predicted class has a mediocre test set performance, then we need the class probability to be above some critical threshold. Similarly we can relax the threshold for classes where we do exceptionally well.
    6. Wrap your model as an API.
      • Now we start to modularize larger operations (single/batch predict, get experiment details, etc.) so others can use our application without having to execute granular code. There are many options for this like Flask, Django, FastAPI, etc. but we'll use FastAPI for the ease and performance boost.
      • We can also use a Dockerfile to create a Docker image that runs our API. This is a great way to package our entire application to scale it (horizontally and vertically) depending on requirements and usage.
    7. Create an interactive frontend for your application.
      • The best way to showcase your work is to let others easily play with it. We'll be using Streamlit to very quickly create an interactive medium for our application and use Heroku to serve it (1000 hours of usage per month).
      • This is also a great skill to have because in industry you'll need to create this to show key stakeholders and great to have in documentation as well.

Set up

virtualenv -p python3.6 venv
source venv/bin/activate
pip install -r requirements.txt
pip install torch==1.4.0

Download embeddings

python text_classification/utils.py

Training

python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove

Endpoints

uvicorn text_classification.app:app --host 0.0.0.0 --port 5000 --reload
GOTO: http://localhost:5000/docs

Prediction

Scripts

python text_classification/predict.py --text 'The Canadian government officials proposed the new federal law.'

cURL

curl "http://localhost:5000/predict" \
    -X POST -H "Content-Type: application/json" \
    -d '{
            "inputs":[
                {
                    "text":"The Wimbledon tennis tournament starts next week!"
                },
                {
                    "text":"The Canadian government officials proposed the new federal law."
                }
            ]
        }' | json_pp

Requests

import json
import requests

headers = {
    'Content-Type': 'application/json',
}

data = {
    "experiment_id": "latest",
    "inputs": [
        {
            "text": "The Wimbledon tennis tournament starts next week!"
        },
        {
            "text": "The Canadian minister signed in the new federal law."
        }
    ]
}

response = requests.post('http://0.0.0.0:5000/predict',
                         headers=headers, data=json.dumps(data))
results = json.loads(response.text)
print (json.dumps(results, indent=2, sort_keys=False))

Streamlit

streamlit run text_classification/streamlit.py
GOTO: http://localhost:8501

Tests

pytest

Docker

  1. Build image
docker build -t text-classification:latest -f Dockerfile .
  1. Run container
docker run -d -p 5000:5000 -p 6006:6006 --name text-classification text-classification:latest

Heroku

Set `WANDB_API_KEY` as an environment variable.

Directory structure

text-classification/
โ”œโ”€โ”€ datasets/                           - datasets
โ”œโ”€โ”€ logs/                               - directory of log files
|   โ”œโ”€โ”€ errors/                           - error log
|   โ””โ”€โ”€ info/                             - info log
โ”œโ”€โ”€ tests/                              - unit tests
โ”œโ”€โ”€ text_classification/                - ml scripts
|   โ”œโ”€โ”€ app.py                            - app endpoints
|   โ”œโ”€โ”€ config.py                         - configuration
|   โ”œโ”€โ”€ data.py                           - data processing
|   โ”œโ”€โ”€ models.py                         - model architectures
|   โ”œโ”€โ”€ predict.py                        - prediction script
|   โ”œโ”€โ”€ streamlit.py                      - streamlit app
|   โ”œโ”€โ”€ train.py                          - training script
|   โ””โ”€โ”€ utils.py                          - load embeddings and utilities
โ”œโ”€โ”€ wandb/                              - wandb experiment runs
โ”œโ”€โ”€ .dockerignore                       - files to ignore on docker
โ”œโ”€โ”€ .gitignore                          - files to ignore on git
โ”œโ”€โ”€ CODE_OF_CONDUCT.md                  - code of conduct
โ”œโ”€โ”€ CODEOWNERS                          - code owner assignments
โ”œโ”€โ”€ CONTRIBUTING.md                     - contributing guidelines
โ”œโ”€โ”€ Dockerfile                          - dockerfile to containerize app
โ”œโ”€โ”€ LICENSE                             - license description
โ”œโ”€โ”€ logging.json                        - logger configuration
โ”œโ”€โ”€ Procfile                            - process script for Heroku
โ”œโ”€โ”€ README.md                           - this README
โ”œโ”€โ”€ requirements.txt                    - requirementss
โ”œโ”€โ”€ setup.sh                            - streamlit setup for Heroku
โ””โ”€โ”€ sweeps.yaml                         - hyperparameter wandb sweeps config

Overfit to small subset

python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --data-size 0.1 --num-epochs 3

Experiments

  1. Random, unfrozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle
  1. GloVe, frozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove --freeze-embeddings
  1. GloVe, unfrozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove

Next steps

End-to-end topics that will be covered in subsequent lessons.

  • Utilizing wrappers like PyTorch Lightning to structure the modeling even more while getting some very useful utility.
  • Data / model version control (Artifacts, DVC, MLFlow, etc.)
  • Experiment tracking options (MLFlow, KubeFlow, WandB, Comet, Neptune, etc)
  • Hyperparameter tuning options (Optuna, Hyperopt, Sweeps)
  • Multi-process data loading
  • Dealing with imbalanced datasets
  • Distributed training for much larger models
  • GitHub actions for automatic testing during commits
  • Prediction fail safe techniques (input analysis, class-specific thresholds, etc.)

Helpful docker commands

โ€ข Build image

docker build -t madewithml:latest -f Dockerfile .

โ€ข Run container if using CMD ["python", "app.py"] or ENTRYPOINT [ "/bin/sh", "entrypoint.sh"]

docker run -p 5000:5000 --name madewithml madewithml:latest

โ€ข Get inside container if using CMD ["/bin/bash"]

docker run -p 5000:5000 -it madewithml /bin/bash

โ€ข Run container with mounted volume

docker run -p 5000:5000 -v $PWD:/root/madewithml/ --name madewithml madewithml:latest

โ€ข Other flags

-d: detached
-ti: interative terminal

โ€ข Clean up

docker stop $(docker ps -a -q)     # stop all containers
docker rm $(docker ps -a -q)       # remove all containers
docker rmi $(docker images -a -q)  # remove all images
Owner
Made With ML
Applied ML ยท MLOps ยท Production
Made With ML
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py ไธป็จ‹ๅผ Algorithm.py ๆŽจ่–ฆๆผ”็ฎ—ๆณ•๏ผŒๅช’ๅˆ้คๅปณ็ซฏ่ณ‡ๆ–™่ˆ‡้กงๅฎข็ซฏ่ณ‡ๆ–™ config.ini ๅ„ฒๅญ˜ channel-access-tokenใ€channel-secret ่ณ‡ๆ–™ Preface ็”Ÿๆดปๅœจๆˆๅคงๅฐ‡่ฟ‘4ๅนด๏ผŒๆˆ‘ๅ€‘ๆฏๅคฉ็š„ๅˆ้คๆ™‚้–“็œ‹่‘—ๅฝขๅฝข่‰ฒ่‰ฒ

1 Oct 17, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Automated Hyperparameter Optimization Competition

QQๆต่งˆๅ™จ2021AI็ฎ—ๆณ•ๅคง่ต› - ่‡ชๅŠจ่ถ…ๅ‚ๆ•ฐไผ˜ๅŒ–็ซž่ต› ACM CIKM 2021 AnalyticCup ๅœจไฟกๆฏๆตๆŽจ่ไธšๅŠกๅœบๆ™ฏไธญๆ™ฎ้ๅญ˜ๅœจๆจกๅž‹ๆˆ–็ญ–็•ฅๆ•ˆๆžœไพ่ต–ไบŽโ€œ่ถ…ๅ‚ๆ•ฐโ€็š„้—ฎ้ข˜๏ผŒ่€Œโ€œ่ถ…ๅ‚ๆ•ฐ"็š„่ฎพๅฎšๅพ€ๅพ€ไพ่ต–ไบบๅทฅ็ป้ชŒ่ฐƒๅ‚๏ผŒไธไป…ๆ•ˆ็އไฝŽไธ‹็ปดๆŠคๆˆๆœฌ้ซ˜๏ผŒ่€Œไธ”้šพไปฅๅฎž็Žฐๆ›ดไผ˜ๆ•ˆๆžœใ€‚ๅ› ๆญค๏ผŒๆœฌๆฌก่ต›้ข˜ไปฅ่ถ…ๅ‚ๆ•ฐไผ˜ๅŒ–ไธบไธป้ข˜๏ผŒไปŽ็œŸ

20 Dec 09, 2021
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023