CONetV2: Efficient Auto-Channel Size Optimization for CNNs

Related tags

Deep LearningCONetV2
Overview

CONetV2: Efficient Auto-Channel Size Optimization for CNNs

Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted to the International Conference on Machine Learning and Applications (ICMLA) 2021 for Oral Presentation!

CONetV2: Efficient Auto-Channel Size Optimization for CNNs,
Yi Ru Wang, Samir Khaki, Weihang Zheng, Mahdi S. Hosseini, Konstantinos N. Plataniotis
In Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA)

Checkout our arXiv preprint: Paper

Overview

Neural Architecture Search (NAS) has been pivotal in finding optimal network configurations for Convolution Neural Networks (CNNs). While many methods explore NAS from a global search space perspective, the employed optimization schemes typically require heavy computation resources. Instead, our work excels in computationally constrained environments by examining the micro-search space of channel size, the optimization of which is effective in outperforming baselines. In tackling channel size optimization, we design an automated algorithm to extract the dependencies within channel sizes of different connected layers. In addition, we introduce the idea of Knowledge Distillation, which enables preservation of trained weights, admist trials where the channel sizes are changing. As well, because standard performance indicators (accuracy, loss) fails to capture the performance of individual network components, we introduce a novel metric that has high correlation with test accuracy and enables analysis of individual network layers. Combining Dependency Extraction, metrics, and knowledge distillation, we introduce an efficient search algorithm, with simulated annealing inspired stochasticity, and demonstrate its effectiveness in outperforming baselines by a large margin, while only utilizing a fraction of the trainable parameters.

Results

We report our results below for ResNet34. On the left we provide a comparison of our method compared to the baseline, compared to Compound Scaling and Random Optimization. On the right we compare the two variations of our method: Simulated Annealing (Left), Greedy (Right). For further experiments and results, please refer to our paper.

Accuracy vs. Parameters Channel Evolution Comparison

Table of Contents

Getting Started

Dependencies

  • Requirements are specified in requirements.txt
certifi==2020.6.20
cycler==0.10.0
et-xmlfile==1.0.1
future==0.18.2
graphviz==0.14.2
jdcal==1.4.1
kiwisolver==1.2.0
matplotlib==3.3.2
memory-profiler==0.57.0
numpy==1.19.2
openpyxl==3.0.5
pandas==1.1.3
Pillow==8.0.0
pip==18.1
pkg-resources==0.0.0
psutil==5.7.2
ptflops==0.6.2
pyparsing==2.4.7
python-dateutil==2.8.1
pytz ==2020.1
PyYAML==5.3.1
scipy==1.5.2
setuptools==40.8.0
six==1.15.0
torch==1.6.0
torchvision==0.7.0
torchviz==0.0.1
wheel==0.35.1
xlrd==1.2.0

Executing program

To run the main searching script for searching on ResNet34:

cd CONetV2
python main.py --config='./configs/config_resnet.yaml' --gamma=0.8 --optimization_algorithm='SA' --post_fix=1

We also provide a script for training using slurm in slurm_scripts/run.sh. Update parameters on Line 6, 9, and 10 to use.

sbatch slurm_scripts/run.sh

Options for Training

--config CONFIG             # Set root path of project that parents all others:
                            Default = './configs/config.yaml'
--data DATA_PATH            # Set data directory path: 
                            Default = '.adas-data'
--output OUTPUT_PATH        # Set the directory for output files,  
                            Default = 'adas_search'
--root ROOT                 # Set root path of project that parents all others: 
                            Default = '.'
--model MODEL_TYPE          # Set the model type for searching {'resnet34', 'darts'}
                            Default = None
--gamma                     # Momentum tuning factor
                            Default = None
--optimization_algorithm    # Type of channel search algorithm {'greedy', 'SA'}
                            Default = None

Training Output

All training output will be saved to the OUTPUT_PATH location. After a full experiment, results will be recorded in the following format:

  • OUTPUT_PATH/EXPERIMENT_FOLDER
    • full_train
      • performance.xlsx: results for the full train, including GMac, Parameters(M), and accuracies & losses (Train & Test) per epoch.
    • Trials
      • adapted_architectures.xlsx: channel size evolution per convolution layer throughout searching trials.
      • trial_{n}.xlsx: Details of the particular trial, including metric values for every epoch within the trial.
    • ckpt.pth: Checkpoint of the model which achieved the highest test accuracy during full train.

Code Organization

Configs

We provide the configuration files for ResNet34 and DARTS7 for running automated channel size search.

  • configs/config_resnet.yaml
  • configs/config_darts.yaml

Dependency Extraction

Code for dependency extraction are in three primary modules: model to adjacency list conversion, adjacency list to linked list conversion, and linked list to dependency list conversion.

  • dependency/LLADJ.py: Functions for a variety of skeleton models for automated adjacency list extraction given pytorch model instance.
  • dependency/LinkedListConstructor.py: Automated conversion of a adjacency list representation to linked list.
  • dependency/getDependency.py: Extract dependencies based on linked list representation.

Metrics

Code for computing several metrics. Note that we use the QC Metric.

  • metrics/components.py: Helper functions for computing metrics
  • metrics/metrics.py: Script for computing different metrics

Models

Code for all supported models: ResNet34 and Darts7

  • models/darts.py: Pytorch construction of the Darts7 Model Architecture.
  • models/resnet.py: Pytorch construction of the ResNet34 Model Architecture

Optimizers

Code for all optimizer options and learning rate schedulers for training networks. Options include: AdaS, SGD, StepLR, MultiStepLR, CosineAnnealing, etc.

  • optim/*

Scaling Method

Channel size scaling algorithm between trials.

  • scaling_method/default_scaling.py: Contains the functions for scaling of channel sizes based on computed metrics.

Searching Algorithm

Code for channel size searching algorithms.

  • searching_algorithm/common.py: Common functions used for searching algorithms.
  • searching_algorithm/greedy.py: Greedy way of searching for channel sizes, always steps in the direction that yields the optimal local solution.
  • searching_algorithm/simulated_annealing.py: Simulated annealing inspired searching, induced stochasticity with magnitute of scaling.

Visualization

Helper functions for visualization of metric evolution.

  • visualization/draw_channel_scaling.py: visualization of channel size evolution.
  • visualization/plotting_layers_by_trial.py: visualization of layer channel size changes across different search trials.
  • visualization/plotting_metric_by_trial.py: visualization of metric evolution for different layers across search trials.
  • visualization/plotting_metric_by_epoch.py: visualization of metric evolution through the epochs during full train.

Utils

Helper functions for training.

  • utils/create_dataframe.py: Constructs dataframes for storing output files.
  • utils/test.py: Running accuracy and loss tests per epoch.
  • utils/train_helpers.py: Helper functions for training epochs.
  • utils/utils.py: Helper functions.
  • utils/weight_transfer.py: Function to execute knowledge distillation across trials.

Version History

  • 0.1
    • Initial Release
Owner
Mahdi S. Hosseini
Assistant Professor in ECE Department at University of New Brunswick. My research interests cover broad topics in Machine Learning and Computer Vision problems
Mahdi S. Hosseini
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022