In Search of Probeable Generalization Measures

Related tags

Deep LearningGenProb
Overview

In Search of Probeable Generalization Measures

Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Conference on Machine Learning and Applications (ICMLA) 2021 for Oral Presentation!

In Search of Probeable Generalization Measures,
Jonathan Jaegerman, Khalil Damouni, Mahdi S. Hosseini, Konstantinos N. Plataniotis, In Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA)

Table of Contents

Overview

In Search of Probeable Generalization Measures evaluates and compares generalization measures to establish firm ground for further investigation and incite the production of novel deep learning algorithms that improve generalization. This repository contains the scripts used to parse through GenProb, a dataset of trained deep CNNs, processing model layer weights and computing generalization measures. You can use this code to better understand how GenProb can be used to test generalization measures and HPO algorithms. Measure calculation scripts are also provided.

image

Generalization Measures

Stable quality (SQ) refers to the stability of encoding in a deep layer that is calculated with the relative ratio of stable rank and condition number of a layer.

Effective rank (E) refers to the dimension of the output space of the transformation operated by a deep layer that is calculated with the Shannon entropy of the normalized singular values of a layer as defined in.

Frobenius norm (F) refers to the magnitude of a deep layer that is calculated with the sum of the squared values of a weight tensor.

Spectral norm (S) refers to the maximum magnitude of mapping by a transformation operated by a layer that is calculated as the maximum singular value of a weight tensor.

Further elaboration of these metrics and their equations can be found in the paper. The layer-wise processing of these metrics can be found under /source/process.py along with a list of other metrics discluded from the paper. Convolution weight tensors are first unfolded along channel axes into a 2d matrix before metrics are calculated via processing of singular values or other norm calculations. The low rank factorization preprocessing of weight matrices is also included under the EVBMF function. Metrics are aggregated accross layers

GenProb Dataset

Generalization Dataset for Probeable Measures is a family of trained models used to test the effectiveness of the measures for tracking generalization performance at earlier stages of training. We train families of models with varied hyperparameter and channel size configurations as elaborated in the paper.

The full dataset of pytorch model files can be accessed at: (LINK) --currently being uploaded

Results

Generalization measures plotted against generalization performance metrics at progressive epochs of training for models optimized with Adam from the GenProb dataset.

Evolution of generalization measure correlation with generalization performance metrics over epochs of training for models optimized with Adam from the GenProb dataset.

Requirements

We use Python 3.7.

Software

Please find required libraries in the requirements.txt file.

Usage

Pretrained Models

GenProb pretrianed model weights should be placed in the GenProb/models/GenProb. Other pretrained model weight may be placed anywhere, and the path must be specified in source/parsing_agent.py.

Within source/main.py, the library of models must be specified, alongside the hyperparameter configuration wanted. For GenProb, that includes the number of epochs trained for, and the dataset. Evaluations may be done in batches, using the boolean new. If set to 0, evaluation will begin at the index specified by start. The name of the file the results should be appened to must be specified as well. Otherwise, it will begin at the first file in the folder, and appened results to a new file.

This outputs a csv file, with the metrics evaluation on a layer-wise basis. These may be aggregated as wanted, or by using methods specified in the paper through use of the file source/qualities.py.

Common Issues (running list)

Owner
Mahdi S. Hosseini
Assistant Professor in ECE Department at University of New Brunswick. My research interests cover broad topics in Machine Learning and Computer Vision problems
Mahdi S. Hosseini
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023