NLMpy - A Python package to create neutral landscape models

Overview

NLMpy

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns across landscapes. NLMpy can create both continuous patterns to represent landscape characteristics such as elevation or moisture gradients, or categorical patterns to represent landscape characteristics such as vegetation patches or land parcel boundaries.

NLMpy aims to:

  • be open-source so it can be easily adapted or developed for specific modelling requirements.
  • be cross-platform it can be used on any computer system.
  • bring together a wide range of neutral landscape model algorithms.
  • be easily integrated with geographic information system data.
  • enable novel combinations and integrations of different neutral landscape model algorithms.

A full description of the package can be found in the accompanying software paper.

Quick examples

All the NLMpy neutral landscape models are produced as two-dimensional NumPy arrays, so the results can be easily incorporated into broader Python workflows.

Using NLMpy to create a midpoint displacement neutral landscape model can be achieved with only two lines of code:

from nlmpy import nlmpy
nlm = nlmpy.mpd(nRow=50, nCol=50, h=0.75)

But as described in the software paper a wide variety of different patterns can be produced:

Citation

If you use NLMpy in your research we would be very grateful if you could please cite the software using the following freely available software paper:

Etherington TR, Holland EP, O'Sullivan D (2015) NLMpy: a Python software package for the creation of neutral landscape models within a general numerical framework. Methods in Ecology and Evolution 6:164-168

Installation

NLMpy is available on the Python Package Index, so it can be installed using:

pip install nlmpy

If that does not work you could also simply move the NLMpy.py file to the same location on your computer as a Python script that wants to import NLMpy, then when those scripts are executed they will import all the NLMpy functions. So while this approach does not actually install NLMpy onto your computer, it does at least allow you to make use of the functionality of NLMpy within a neighbouring Python script.

Package dependencies

  • numpy
  • scipy
  • numba

Community guidelines

We very much welcome input from others! If you find a bug, need some help, or can think of some extra functionality that would be useful, please raise an issue. Better still, please feel free to fork the project and raise a pull request if you think and can fix a bug, clarify the documentation, or improve the functionality yourself.

Owner
Manaaki Whenua – Landcare Research
Manaaki Whenua – Landcare Research
A collection of models for image<->text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022