Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Overview

Sign Language Recognition Service

This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition. The service was developed as a part of a bachelor project at Aalborg University.

alt text

Requirements

  • Python 3.7
  • OpenPose 1.6.0
  • CUDA 10.0
  • cuDNN 7.5.0
  • Numpy 1.18.5
  • OpenCV 4.5.1.48
  • Flask 1.1.2
  • Tensorflow 2.0.0
  • Pandas 1.1.5
  • Tensorboard
  • Matplotlib
  • Seaborn
  • Scikit-Learn

How to use

Installing OpenPose

  1. Please install OpenPose 1.6.0 for Python by following the official guide. Note that the newest release on the OpenPose github is 1.7.0 - for this service to work, 1.6.0 must be used.

    A few things to note when installing OpenPose:

    • When cloning the OpenPose repository, use the following git command to get version 1.6.0:
      git clone --depth 1 --branch v1.6.0 https://github.com/CMU-Perceptual-Computing-Lab/openpose
      
    • Remember to run the following command on the newly cloned repository:
      git submodule update --init --recursive --remote
      
    • Use Visual Studio Enterprise 2017 to build the required files. Install this first if you do not already have it.
    • Install CUDA 10.0 and cuDNN 7.5.0 for CUDA 10.0 after installing Visual Studio Enterprise 2017.
    • When generating the files using CMake, make sure that the BUILD_PYTHON flag is enabled, and that the Python version is set to 3.7. Also make sure that the detected CUDA version is 10.0.
    • After building with Visual Studio Enterprise 2017, make sure that all necessary files have been generated.
      • There should be a openpose.dll in /x64/Release/
      • There should be a openpose.exp and openpose.lib in /src/openpose/Release/
      • There should be a pyopenpose.cp37-win_amd64.pyd in /python/openpose/Release/
  2. Install requirements from requirements.txt

  3. Change the path in main/openpose/paths.py to the path of your OpenPose installation:

    # Change this path so it points to your OpenPose path relative to this file
    OPEN_POSE_PATH = get_relative_path(__file__, '../../../../openpose')
    
  4. If you get any errors related to OpenPose when running the service, please go back and make sure that all instructions have been followed - be particularly careful to install the correct CUDA/cuDNN versions, make sure that the BUILD_PYTHON flag was enabled and that Python 3.7 was used when generating the files.

When OpenPose is successfully installed, you can either use the existing model trained on our dataset, or you can choose to make your own dataset and train a model on this instead.

alt text

Using the service

A singular endpoint '/recognize' has been created in order to perform recognition, which allows for POST requests to be made. The endpoint expects a sequence of base64 images, which will get converted into a suitable format recognizable by the classifier.

alt text

alt text

Creating a custom dataset

In order to create a custom dataset, you can access the file create_dataset.py and change the following constant:

DATASET_NAME = 'dsl_dataset'

Such that the path in the constant DATASET_DIR points to a folder where the dataset is located. This folder should contain another folder called 'src', which contains folders for all the desired labels in the dataset. Each of these folders should contain videos of the corresponding sign.

Before running the script, the following constants can be tweaked based on the desired settings:

WINDOW_LENGTH = 60
STRIDE = 5
BATCH_SIZE = 512
VAL_SPLIT = 0.2
TEST_SPLIT = 0.1

Finally, the following constant can be changed:

CREATE_RAW_DATA = True

This is because initial feature extraction by OpenPose can be a fairly lengthy process. This allows for the tweaking of the dataset after features have been extracted, by setting this to False. Note that the raw OpenPose data must be created before the actual dataset can be created, so it is necessary to do this at least once.

Training a custom model

In order to train a custom model you can make use of the train_models.py file. Here, the constant DATASET_NAME can be changed to reflect the name of the dataset you wish to use, such that the DATASET_DIR points to the correct folder. Furthermore, you can specify a tensorboard directory:

DATASET_NAME = 'dsl_dataset'
DATASET_DIR = f'.\\main\\algorithm\\datasets\\{DATASET_NAME}'
MODELS_DIR = f'.\\main\\algorithm\\models\\{DATASET_NAME}'
TENSORBOARD_DIR = f'{MODELS_DIR}\\logs'

Before running the script, you can tweak various training settings as well as the hyper parameters of the model by changing the following constants:

MODEL_NAME = "model"
EPOCHS = 25
LAYER_SIZES = [64]
DENSE_LAYERS = [0]
DENSE_ACTIVATION = "relu"
LSTM_LAYERS = [2]
LSTM_ACTIVATION = "tanh"
OUTPUT_ACTIVATION = "softmax"

Note that the trainer can train multiple models depending on these settings. Changing the LAYER_SIZES, DENSE_LAYERS and LSTM_LAYERS to contain several values will result in a model being trained for each possible combination.

After training your model, you should change the paths.py located in main/core/ to reflect the path to the new model by changing the constant MODEL_NAME to the name of your model:

MODEL_NAME = 'dsl_lstm.model'

Finally, it also possible to generate a confusion matrix for your model by using the generate_confusion_matrix.py script. Here, you simply change the constants DATASET_NAME and MODEL_NAME such that the DATASET_DIR points to your dataset directory, and MODEL_DIR points to your model directory, respectively:

DATASET_NAME = "dsl_dataset"
MODEL_NAME = "dsl_lstm"
DATASET_DIR = f"./main/algorithm/datasets/{DATASET_NAME}/{DATASET_NAME}.pickle"
MODEL_DIR = f"./main/algorithm/models/{DATASET_NAME}/{MODEL_NAME}"

Happy signing :O)

Authors

  • Adil Cemalovic
  • Martin Lønne
  • Magnus Helleshøj Lund
Owner
Martin Lønne
Full-stack software developer with an interest in Cloud development. Is working most with Javascript, C#, and Python for machine learning.
Martin Lønne
Document manipulation detection with python

image manipulation detection task: -- tianchi function image segmentation salie

JiaKui Hu 3 Aug 22, 2022
Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Dual Encoding for Video Retrieval by Text Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding

81 Dec 01, 2022
Validate and transform various OCR file formats (hOCR, ALTO, PAGE, FineReader)

ocr-fileformat Validate and transform between OCR file formats (hOCR, ALTO, PAGE, FineReader) Installation Docker System-wide Usage CLI GUI API Transf

Universitätsbibliothek Mannheim 152 Dec 20, 2022
Image augmentation for machine learning experiments.

imgaug This python library helps you with augmenting images for your machine learning projects. It converts a set of input images into a new, much lar

Alexander Jung 13.2k Jan 02, 2023
Crop regions in napari manually

napari-crop Crop regions in napari manually Usage Create a new shapes layer to annotate the region you would like to crop: Use the rectangle tool to a

Robert Haase 4 Sep 29, 2022
A PyTorch implementation of ECCV2018 Paper: TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes A PyTorch implement of TextSnake: A Flexible Representation for Detecting

Prince Wang 417 Dec 12, 2022
Simple SDF mesh generation in Python

Generate 3D meshes based on SDFs (signed distance functions) with a dirt simple Python API.

Michael Fogleman 1.1k Jan 08, 2023
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework (CVPR 2021 oral)

MTLFace This repository contains the PyTorch implementation and the dataset of the paper: When Age-Invariant Face Recognition Meets Face Age Synthesis

Hzzone 120 Jan 05, 2023
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

Jin-Fan Hu (胡锦帆) 11 Dec 12, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Code for CVPR'2022 paper ✨ "Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-Language Model"

PPE ✨ Repository for our CVPR'2022 paper: Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-

Zipeng Xu 34 Nov 28, 2022
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022
A pure pytorch implemented ocr project including text detection and recognition

ocr.pytorch A pure pytorch implemented ocr project. Text detection is based CTPN and text recognition is based CRNN. More detection and recognition me

coura 444 Dec 30, 2022
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit

sushant097 224 Jan 07, 2023
Handwritten Character Recognition using CNN

Handwritten Character Recognition using CNN Problem Definition The main objective of this project is to solve the problem of handwritten character rec

Mohit Kaushik 4 Mar 02, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
A dataset handling library for computer vision datasets in LOST-fromat

A dataset handling library for computer vision datasets in LOST-fromat

8 Dec 15, 2022
This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images.

Welcome This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images. Installation There are curren

8 Jul 29, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022