Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Overview

Introduction

This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as inspiration for future restructuring of the matplotlib documentation. Plus, I have some ideas of how to improve this tutorial.

Please fork and contribute back improvements! Feel free to use this tutorial for conferences and other opportunities for training.

The tutorial can be viewed on nbviewer:

Installation

All you need is matplotlib (v1.5 or greater) and jupyter installed. You can use your favorite Python package installer for this:

conda install matplotlib jupyter
git clone https://github.com/matplotlib/AnatomyOfMatplotlib.git
cd AnatomyOfMatplotlib
jupyter notebook

A browser window should appear and you can verify that everything works as expected by clicking on the Test Install.ipynb notebook. There, you will see a "code cell" that you can execute. Run it, and you should see a very simple line plot, indicating that all is well.

Comments
  • Updated the categorical example

    Updated the categorical example

    switched code in example to:

    data = [('apples', 2), ('oranges', 3), ('peaches', 1)]
    fruit, value = zip(*data)
    
    fig, ax = plt.subplots()
    ax.bar(fruit, value, align='center', color='gray')
    plt.show()
    
    opened by story645 7
  • Interactive example demo

    Interactive example demo

    This example is inspired from my severe usage of MATLAB overlay plotting where I plot on a figure and based on its distribution/look I do some operation in backend like moving the image to another directory etc. Hoping this example would become handy for someone like me(who moved from MATLAB plotting)
    Discussion : Twitter Link

    opened by nithinraok 6
  • Fixes #26

    Fixes #26

    • /mpl-data/sample_data/axes_grid folder appears to no longer exists as of matplotlib v2.2.2
    • added /assets folder in repo containing dependent numpy pickle, 'bivariate_normal.npy' file
    • revised load of data in AnatomyOfMatplotlib-Part2-Plotting_Methods_Overview.ipynb to reflect this change
    • tested successfully with matplotlib v2.2.2 and python v3.6.6
    opened by ggodreau 4
  • Add knot to Ugly Tie shape

    Add knot to Ugly Tie shape

    Added geometry to the Ugly Tie polygon to look like a knot.

    It remains a single polygon so color will affect both visible parts.

    At large zooms/resolutions a connection between the right side of the knot and the main tie is visible because the points on right side of the knot are not perfectly in-line with the upper right corner of the tie where the two larger parts of the shape are visible. If this becomes an issue, doing some math to find evenly dividing, aligned points near the current values would make the connecting section of the polygon zero width.

    opened by TheAtomicOption 3
  • New plotting overview

    New plotting overview

    I realize this is a bit last-minute and a big change, but I really feel like we were missing a good overview of the various plotting methods.

    I've added a new Part 2 (and renamed the other sections) to cover this: http://nbviewer.ipython.org/url/geology.beer/scipy2015/tutorial/AnatomyOfMatplotlib-Part2-Plotting_Methods_Overview.ipynb

    I've tried to make a lot of nice summary images of the most commonly-used plotting methods. The "full" gallery can be very overwhelming, so it's useful to give people a condensed version. Also, these

    80% of the new Part 2 is just quickly looking those images so that people are vaguely aware of what's out there. The code to generate them is also there to serve as an example.

    The new section only goes over bar, fill_between and imshow in more detail. It's not anywhere near as long as it looks at first glance.

    opened by joferkington 3
  • Convert to new ipynb format

    Convert to new ipynb format

    The ipython notebook format has changed slightly in recent versions. Notebooks in the old format are automatically converted when they're opened with a more recent version, but I wanted to go ahead and commit the new format versions.

    Otherwise the diffs will be very difficult to read.

    I also added a .gitignore to ignore the hidden checkpoint folder IPython adds, if ipython notebook is run from the source directory.

    opened by joferkington 3
  • imshow color bar

    imshow color bar

    Hello matplotlib developers,

    I was watching the Youtube recording: Anatomy of Matplotlib from SciPy 2018, and I have a question about AnatomyOfMatplotlib/solutions/2.2-vmin_vmax_imshow_and_colorbars.py

    From line 17 to 18...

    for ax, data in zip(axes, [data1, data2, data3]): im = ax.imshow(data, vmin=0, vmax=3, interpolation='nearest')

    I am assuming data3 has bigger values, followed by data2 and data2, since data3 is multiplied by 3. Suppose if I switch the order of the list in line 17 from:

    for ax, data in zip(axes, [data1, data2, data3]):

    to:

    for ax, data in zip(axes, [data3, data2, data1]):

    So, the last im object would data1 which has a 10 by 10 array with max value of 1. Since we are giving the last im object to make the colorbar, would that mean the range color bar spans from 0 to around 1? Or does matplotlib somehow manage to look at all three plotted imshows and perceive that the maximum value amongst the three imshows is around 3?

    Thank you!

    opened by ZarulHanifah 2
  • Chapter 2 subsec colorbars example data missing

    Chapter 2 subsec colorbars example data missing

    Seems like the example data used in chapter 2 at the colorbar example is no longer supported as of py 3.1. bivariate_normal.npy is not in any folder and has apparantly been discontinued.

    opened by Nafalem231 2
  • Overhaul of Part 1

    Overhaul of Part 1

    First off, IPython/Jupyter has recently had a .ipynb format change, so these diffs are rather messy. If I'd thought about it more, I would have made that a separate commit, but I didn't realize until edits were underway.

    At any rate, I've changed Part1 rather significantly. I pruned some things out and expanded others. I'm intending to add another section detailing basic categories of plotting functions, so I removed several of the references to those in this section.

    Even after these changes, Part1 is still rather long. I might split it (particularly the part after the second exercise and before the third) into another section.

    At any rate hopefully you can see where I'm going with this. Thanks, and looking forward to teaching here in a few weeks!

    opened by joferkington 1
  • from __future__ import print_function so print works same for Python 2&3

    from __future__ import print_function so print works same for Python 2&3

    Just finished going through the notebooks with Python3 and everything worked fine except for having to manually modify all the print statements. Figured it could be made to seamlessly work with both Python 2 and 3 by simply using a from __future__ import print_function.

    opened by jarthurgross 1
  • Fix some typos, and cleared cell outputs.

    Fix some typos, and cleared cell outputs.

    Also threw out some extraneous sentences. Keep things simple and straight-forward. Resist the temptation to reveal everything at once. I will leave this up for a little bit for comment and then merge later today.

    opened by WeatherGod 0
  • Remove backend and add resolve nteract: matplotlib.use('nbagg')

    Remove backend and add resolve nteract: matplotlib.use('nbagg')

    Backend is no longer necessary IMO. Using a backend results in the following error on Jupyter.

    Javascript Error: IPython is not defined
    

    Also adding %matplotlib inline before importing matplotlib resolves the displaying of graphs.

    Should I fix them in the notebooks and send a PR?

    Thanks.

    opened by hasibzunair 8
  • make examples progressive

    make examples progressive

    In part 2, the example is too much to do at once. Rather, it would make sense to build up that example as more is taught. Perhaps a new feature for IPython notebooks would be useful (floating cells?)

    opened by WeatherGod 2
Releases(v2.0)
  • v2.0(Jul 25, 2014)

Owner
Matplotlib Developers
Matplotlib Developers
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022