PyTorch META-DATASET (Few-shot classification benchmark)

Overview

PyTorch META-DATASET (Few-shot classification benchmark)

This repo contains a PyTorch implementation of meta-dataset and a unified implementation of some few-shot methods. This repo may be useful to you if you:

  • want some pre-trained ImageNet models in PyTorch for META-DATASET;
  • want to benchmark your method on META-DATASET (but do not want to mix your PyTorch code with the original TensorFlow implementation);
  • are looking for a codebase to visualize few-shot episodes.

Benefits over original code:

  1. This repo can be properly seeded, allowing to repeat the same random series of episodes if needed;
  2. Data shuffling is performed without using a buffer, hence reducing the memory consumption;
  3. Better results can be obtained using this repo thanks to an enhanced way of resizing images. More details in the paper.

Note that this code also includes the original implementation for comparison (using the PyTorch workaround proposed by the authors). If you wish to use the original implementation, set the option loader_version: 'tf' in base.yaml (by default set to pytorch).

Yet to do:

  1. Add more methods
  2. Test for the multi-source setting

Table of contents

1. Setting up

Please carefully follow the instructions below to get started.

1.1 Requirements

The present code was developped and tested in Python 3.8. The list of requirements is provided in requirements.txt:

pip install -r requirements.txt

1.2 Data

To download the META-DATASET, please follow the details instructions provided at meta-dataset to obtain the .tfrecords converted data. Once done, make sure all converted dataset are in a single folder, and execute the following script to produce index files:

bash scripts/make_records/make_index_files.sh <path_to_converted_data>

This may take a few minutes. Once all this is done, set the path variable in config/base.yaml to your data folder.

1.3 Download pre-trained models

We provide trained Resnet-18 and WRN-2810 models on the training split of ILSVRC_2012 at checkpoints. All non-episodic baselines use the same checkpoint, stored in the standard folder. The results (averaged over 600 episodes) obtained with the provided Resnet-18 are summarized below:

Inductive methods Architecture ILSVRC Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Signs MSCOCO Mean
Finetune Resnet-18 59.8 60.5 63.5 80.6 80.9 61.5 45.2 91.1 55.1 41.8 64.0
ProtoNet Resnet-18 48.2 46.7 44.6 53.8 70.3 45.1 38.5 82.4 42.2 38.0 51.0
SimpleShot Resnet-18 60.0 54.2 55.9 78.6 77.8 57.4 49.2 90.3 49.6 44.2 61.7
Transductive methods Architecture ILSVRC Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Signs MSCOCO Mean
BD-CSPN Resnet-18 60.5 54.4 55.2 80.9 77.9 57.3 50.0 91.7 47.8 43.9 62.0
TIM-GD Resnet-18 63.6 65.6 66.4 85.6 84.7 65.8 57.5 95.6 65.2 50.9 70.1

See Sect. 1.4 and 1.5 to reproduce these results.

1.4 Train models from scratch (optional)

In order to train you model from scratch, execute scripts/train.sh script:

bash scripts/train.sh <method> <architecture> <dataset>

method is to be chosen among all method specific config files in config/, architecture in ['resnet18', 'wideres2810'] and dataset among all datasets (as named by the META-DATASET converted folders). Note that the hierarchy of arguments passed to src/train.py and src/eval.py is the following: base_config < method_config < opts arguments.

Mutiprocessing : This code supports distributed training. To leverage this feature, set the gpus option accordingly (for instance gpus: [0, 1, 2, 3]).

1.5 Test your models

Once trained (or once pre-trained models downloaded), you can evaluate your model on the test split of each dataset by running:

bash scripts/test.sh <method> <architecture> <base_dataset> <test_dataset>

Results will be saved in results/ / where corresponds to a unique hash number of the config (you can only get the same result folder iff all hyperparameters are the same).

2. Visualization of results

2.1 Training metrics

During training, training loss and validation accuracy are recorded and saved as .npy files in the checkpoint folder. Then, you can use the src/plot.py to plot these metrics (even during training).

Example 1: Plot the metrics of the standard (=non episodic) resnet-18 on ImageNet:

python src/plot.py --folder checkpoints/ilsvrc_2012/ilsvrc_2012/resnet18/standard/

Example 2: Plot the metrics of all Resnet-18 trained on ImageNet

python src/plot.py --folder checkpoints/ilsvrc_2012/ilsvrc_2012/resnet18/

2.2 Inference metrics

For methods that perform test-time optimization (for instance MAML, TIM, Finetune, ...), method specific metrics are plotted in real-time (versus test iterations) and averaged over test epidodes, which can allow you to track unexpected behavior easily. Such metrics are implemented in src/metrics/, and the choice of which metric to plot is specificied through the eval_metrics option in the method .yaml config file. An example with TIM method is provided below.

2.3 Visualization of episodes

By setting the option visu: True at inference, you can visualize samples of episodes. An example of such visualization is given below:

The samples will be saved in results/. All relevant optons can be found in the base.yaml file, in the EVAL-VISU section.

3. Incorporate your own method

This code was designed to allow easy incorporation of new methods.

Step 1: Add your method .py file to src/methods/ by following the template provided in src/methods/method.py.

Step 2: Add import in src/methods/__init__.py

Step 3: Add your method .yaml config file including the required options episodic_training and method (name of the class corresponding to your method). Also make sure that if your method performs test-time optimization, you also properly set the option iter that specifies the number of optimization steps performed at inference (this argument is also used to plot the inference metrics, see section 2.2).

4. Contributions

Contributions are more than welcome. In particular, if you want to add methods/pre-trained models, do make a pull-request.

5. Citation

If you find this repo useful for your research, please consider citing the following papers:

@misc{boudiaf2021mutualinformation,
      title={Mutual-Information Based Few-Shot Classification}, 
      author={Malik Boudiaf and Ziko Imtiaz Masud and Jérôme Rony and Jose Dolz and Ismail Ben Ayed and Pablo Piantanida},
      year={2021},
      eprint={2106.12252},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Additionally, do not hesitate to file issues if you encounter problems, or reach out directly to Malik Boudiaf ([email protected]).

6. Acknowledgments

I thank the authors of meta-dataset for releasing their code and the author of open-source TFRecord reader for open sourcing an awesome Pytorch-compatible TFRecordReader ! Also big thanks to @hkervadec for his thorough code review !

Owner
Malik Boudiaf
Malik Boudiaf
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022