Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

Overview

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation

This repository contains MegEngine implementation of our paper:

hydrussoftware

Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation
Jiankun Li, Peisen Wang, Pengfei Xiong, Tao Cai, Ziwei Yan, Lei Yang, Jiangyu Liu, Haoqiang Fan, Shuaicheng Liu
CVPR 2022

arXiv | BibTeX

Datasets

The Proposed Dataset

Download

There are two ways to download the dataset(~400GB) proposed in our paper:

  • Download using shell scripts dataset_download.sh
sh dataset_download.sh

the dataset will be downloaded and extracted in ./stereo_trainset/crestereo

  • Download from BaiduCloud here(Extraction code: aa3g) and extract the tar files manually.

Disparity Format

The disparity is saved as .png uint16 format which can be loaded using opencv imread function:

def get_disp(disp_path):
    disp = cv2.imread(disp_path, cv2.IMREAD_UNCHANGED)
    return disp.astype(np.float32) / 32

Other Public Datasets

Other public datasets we use including

Dependencies

CUDA Version: 10.1, Python Version: 3.6.9

  • MegEngine v1.8.2
  • opencv-python v3.4.0
  • numpy v1.18.1
  • Pillow v8.4.0
  • tensorboardX v2.1
python3 -m pip install -r requirements.txt

We also provide docker to run the code quickly:

docker run --gpus all -it -v /tmp:/tmp ylmegvii/crestereo
shotwell /tmp/disparity.png

Inference

Download the pretrained MegEngine model from here and run:

python3 test.py --model_path path_to_mge_model --left img/test/left.png --right img/test/right.png --size 1024x1536 --output disparity.png

Training

Modify the configurations in cfgs/train.yaml and run the following command:

python3 train.py

You can launch a TensorBoard to monitor the training process:

tensorboard --logdir ./train_log

and navigate to the page at http://localhost:6006 in your browser.

Acknowledgements

Part of the code is adapted from previous works:

We thank all the authors for their awesome repos.

Citation

If you find the code or datasets helpful in your research, please cite:

@misc{Li2022PracticalSM,
      title={Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation},
      author={Jiankun Li and Peisen Wang and Pengfei Xiong and Tao Cai and Ziwei Yan and Lei Yang and Jiangyu Liu and Haoqiang Fan and Shuaicheng Liu},
      year={2022},
      eprint={2203.11483},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022