MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

Overview

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts

Website shields.io Documentation Status MIT license OpenReview Python 3.6 Pytorch Made withJupyter GitHub stars

This repo provides the PyTorch source code of our paper: MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022). [PDF] [ICLR 2022 Video] [Slides] [HuggingFace]

Project website: https://MetaShift.readthedocs.io/

@InProceedings{liang2022metashift,
  title={MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts},
  author={Weixin Liang and James Zou},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=MTex8qKavoS}
}

This repo provides the scripts for generating the proposed MetaShift, which offers a resource of 1000s of distribution shifts.

Abstract

Understanding the performance of machine learning model across diverse data distributions is critically important for reliable applications. Motivated by this, there is a growing focus on curating benchmark datasets that capture distribution shifts. While valuable, the existing benchmarks are limited in that many of them only contain a small number of shifts and they lack systematic annotation about what is different across different shifts. We present MetaShift---a collection of 12,868 sets of natural images across 410 classes---to address this challenge. We leverage the natural heterogeneity of Visual Genome and its annotations to construct MetaShift. The key construction idea is to cluster images using its metadata, which provides context for each image (e.g. cats with cars or cats in bathroom) that represent distinct data distributions. MetaShift has two important benefits: first it contains orders of magnitude more natural data shifts than previously available. Second, it provides explicit explanations of what is unique about each of its data sets and a distance score that measures the amount of distribution shift between any two of its data sets. We demonstrate the utility of MetaShift in benchmarking several recent proposals for training models to be robust to data shifts. We find that the simple empirical risk minimization performs the best when shifts are moderate and no method had a systematic advantage for large shifts. We also show how MetaShift can help to visualize conflicts between data subsets during model training.

Figure 1: Example Cat vs. Dog Images from MetaShift. For each class, MetaShift provides many subsets of data, each of which corresponds different contexts (the context is stated in parenthesis).

Figure 2: Infographics of MetaShift.

Figure 3: Meta-graph: visualizing the diverse data distributions within the “cat” class.

Repo Structure Overview

.
├── README.md
├── dataset/
    ├── meta_data/ 
    ├── generate_full_MetaShift.py
    ├── ...         
├── experiments/
    ├── subpopulation_shift/              
        ├── main_generalization.py
        ├── ...

The dataset folder provides the script for generating MetaShift. The experiments folder provides the expriments on MetaShift in the paper.

Dependencies

  • Python 3.6.13 (e.g. conda create -n venv python=3.6.13)
  • PyTorch Version: 1.4.0
  • Torchvision Version: 0.5.0

Download Visual Genome

We leveraged the natural heterogeneity of Visual Genome and its annotations to construct MetaShift. Download the pre-processed and cleaned version of Visual Genome by GQA.

  • Download image files (~20GB) and scene graph annotations:
wget -c https://nlp.stanford.edu/data/gqa/images.zip
unzip images.zip -d allImages
wget -c https://nlp.stanford.edu/data/gqa/sceneGraphs.zip  
unzip sceneGraphs.zip -d sceneGraphs
  • After this step, the base dataset file structure should look like this:
/data/GQA/
    allImages/
        images/
            <ID>.jpg
    sceneGraphs/
        train_sceneGraphs.json
        val_sceneGraphs.json
  • Specify local path of Visual Genome Extract the files, and then specify the folder path (e.g., IMAGE_DATA_FOLDER=/data/GQA/allImages/images/) in Constants.py.

Generate the Full MetaShift Dataset (subsets defined by contextual objects)

Understanding dataset/meta_data/full-candidate-subsets.pkl

The metadata file dataset/meta_data/full-candidate-subsets.pkl is the most important piece of metadata of MetaShift, which provides the full subset information of MetaShift. To facilitate understanding, we have provided a notebook dataset/understanding_full-candidate-subsets-pkl.ipynb to show how to extract information from it.

Basically, the pickle file stores a collections.defaultdict(set) object, which contains 17,938 keys. Each key is a string of the subset name like dog(frisbee), and the corresponding value is a list of the IDs of the images that belong to this subset. The image IDs can be used to retrieve the image files from the Visual Genome dataset that you just downloaded. In our current version, 13,543 out of 17,938 subsets have more than 25 valid images. In addition, dataset/meta_data/full-candidate-subsets.pkl is drived from the scene graph annotation, so check it out if your project need additional information about each image.

Generate Full MetaShift

Since the total number of all subsets is very large, all of the following scripts only generate a subset of MetaShift. As specified in dataset/Constants.py, we only generate MetaShift for the following classes (subjects). You can add any additional classes (subjects) into the list. See dataset/meta_data/class_hierarchy.json for the full object vocabulary and its hierarchy. SELECTED_CLASSES = [ 'cat', 'dog', 'bus', 'truck', 'elephant', 'horse', 'bowl', 'cup', ]

In addition, to save storage, all copied images are symbolic links. You can set use_symlink=True in the code to perform actual file copying. If you really want to generate the full MetaShift, then set ONLY_SELECTED_CLASSES = True in dataset/Constants.py.

cd dataset/
python generate_full_MetaShift.py

The following files will be generated by executing the script. Modify the global varaible SUBPOPULATION_SHIFT_DATASET_FOLDER to change the destination folder.

/data/MetaShift/MetaDataset-full
├── cat/
    ├── cat(keyboard)/
    ├── cat(sink)/ 
    ├── ... 
├── dog/
    ├── dog(surfboard) 
    ├── dog(boat)/ 
    ├── ...
├── bus/ 
├── ...

Beyond the generated MetaShift dataset, the scipt also genervates the meta-graphs for each class in dataset/meta-graphs.

.
├── README.md
├── dataset/
    ├── generate_full_MetaShift.py
    ├── meta-graphs/             (generated meta-graph visualization) 
        ├──  cat_graph.jpg
        ├──  dog_graph.jpg
        ├──  ...
    ├── ...         

Bonus: Generate the MetaShift-Attributes Dataset (subsets defined by subject attributes)

Figure: Example Subsets based on object attribute contexts. the attribute is stated in parenthesis). MetaShift covers attributes including activity (e.g., sitting, jumping), color (e.g., orange, white), material (e.g., wooden, metallic), shape (e.g., round, square), and so on.

Understanding dataset/attributes_MetaShift/attributes-candidate-subsets.pkl

dataset/attributes_MetaShift/attributes-candidate-subsets.pkl stores the metadata for MetaShift-Attributes, where each subset is defined by the attribute of the subject, e.g. cat(orange), cat(white), dog(sitting), dog(jumping).

attributes-candidate-subsets.pkl has the same data format as full-candidate-subsets.pkl. To facilitate understanding, we have provided a notebook dataset/attributes_MetaShift/understanding_attributes-candidate-subsets-pkl.ipynb to show how to extract information from it.

Basically, the pickle file stores a collections.defaultdict(set) object, which contains 4,962 keys. Each key is a string of the subset name like cat(orange), and the corresponding value is a list of the IDs of the images that belong to this subset. The image IDs can be used to retrieve the image files from the Visual Genome dataset that you just downloaded.

Understanding dataset/attributes_MetaShift/structured-attributes-candidate-subsets.pkl

dataset/attributes_MetaShift/structured-attributes-candidate-subsets.pkl is very similar to dataset/attributes_MetaShift/attributes-candidate-subsets.pkl, but stores the metadata in a more structured way. The pickle file stores a 3-level nested dictionary, with the following structure:

.
├── key: 'color'
    ├── key: 'cat'              
        ├── key: 'orange'
            ├── value: a list of image IDs
├── key: 'activity'
    ├── key: 'dog'              
        ├── key: 'sitting'
            ├── value: a list of image IDs
        ├── ...

See the full attrribute ontology in ATTRIBUTE_CONTEXT_ONTOLOGY in dataset/Constants.py

ATTRIBUTE_CONTEXT_ONTOLOGY = {
 'darkness': ['dark', 'bright'],
 'dryness': ['wet', 'dry'],
 'colorful': ['colorful', 'shiny'],
 'leaf': ['leafy', 'bare'],
 'emotion': ['happy', 'calm'],
 'sports': ['baseball', 'tennis'],
 'flatness': ['flat', 'curved'],
 'lightness': ['light', 'heavy'],
 'gender': ['male', 'female'],
 'width': ['wide', 'narrow'],
 'depth': ['deep', 'shallow'],
 'hardness': ['hard', 'soft'],
 'cleanliness': ['clean', 'dirty'],
 'switch': ['on', 'off'],
 'thickness': ['thin', 'thick'],
 'openness': ['open', 'closed'],
 'height': ['tall', 'short'],
 'length': ['long', 'short'],
 'fullness': ['full', 'empty'],
 'age': ['young', 'old'],
 'size': ['large', 'small'],
 'pattern': ['checkered', 'striped', 'dress', 'dotted'],
 'shape': ['round', 'rectangular', 'triangular', 'square'],
 'activity': ['waiting', 'staring', 'drinking', 'playing', 'eating', 'cooking', 'resting', 
              'sleeping', 'posing', 'talking', 'looking down', 'looking up', 'driving', 
              'reading', 'brushing teeth', 'flying', 'surfing', 'skiing', 'hanging'],
 'pose': ['walking', 'standing', 'lying', 'sitting', 'running', 'jumping', 'crouching', 
            'bending', 'smiling', 'grazing'],
 'material': ['wood', 'plastic', 'metal', 'glass', 'leather', 'leather', 'porcelain', 
            'concrete', 'paper', 'stone', 'brick'],
 'color': ['white', 'red', 'black', 'green', 'silver', 'gold', 'khaki', 'gray', 
            'dark', 'pink', 'dark blue', 'dark brown',
            'blue', 'yellow', 'tan', 'brown', 'orange', 'purple', 'beige', 'blond', 
            'brunette', 'maroon', 'light blue', 'light brown']
}

Section 4.2: Evaluating Subpopulation Shifts

Run the python script dataset/subpopulation_shift_cat_dog_indoor_outdoor.py to reproduce the MetaShift subpopulation shift dataset (based on Visual Genome images) in the paper.

cd dataset/
python subpopulation_shift_cat_dog_indoor_outdoor.py

The python script generates a “Cat vs. Dog” dataset, where the general contexts “indoor/outdoor” have a natural spurious correlation with the class labels.

The following files will be generated by executing the python script dataset/subpopulation_shift_cat_dog_indoor_outdoor.py.

Output files (mixed version: for reproducing experiments)

/data/MetaShift/MetaShift-subpopulation-shift
├── imageID_to_group.pkl
├── train/
    ├── cat/             (more cat(indoor) images than cat(outdoor))
    ├── dog/             (more dog(outdoor) images than cat(indoor)) 
├── val_out_of_domain/
    ├── cat/             (cat(indoor):cat(outdoor)=1:1)
    ├── dog/             (dog(indoor):dog(outdoor)=1:1) 

where imageID_to_group.pkl is a dictionary with 4 keys : 'cat(outdoor)', 'cat(outdoor)', 'dog(outdoor)', 'dog(outdoor)'. The corresponding value of each key is the list of the names of the images that belongs to that subset. Modify the global varaible SUBPOPULATION_SHIFT_DATASET_FOLDER to change the destination folder. You can tune the NUM_MINORITY_IMG to control the amount of subpopulation shift.

Output files (unmixed version, for other potential uses)

To facilitate other potential uses, we also outputs an unmixed version, where we output the 'cat(outdoor)', 'cat(outdoor)', 'dog(outdoor)', 'dog(outdoor)' into 4 seperate folders. Modify the global varaible CUSTOM_SPLIT_DATASET_FOLDER to change the destination folder.

/data/MetaShift/MetaShift-Cat-Dog-indoor-outdoor
├── imageID_to_group.pkl
├── train/
    ├── cat/             (all cat(indoor) images)
        ├── cat(indoor)/
    ├── dog/             (all dog(outdoor) images) 
        ├── dog(outdoor)/
├── test/
    ├── cat/             (all cat(outdoor) images)
        ├── cat(outdoor)/
    ├── dog/             (all dog(indoor) images) 
        ├── dog(indoor)/

Appendix D: Constructing MetaShift from COCO Dataset

The notebook dataset/extend_to_COCO/coco_MetaShift.ipynb reproduces the COCO subpopulation shift dataset in paper Appendix D. Executing the notebook would construct a “Cat vs. Dog” task based on COCO images, where the “indoor/outdoor” contexts are spuriously correlated with the class labels.

Install COCO Dependencies

Install pycocotools (for evaluation on COCO):

conda install cython scipy
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

COCO Data preparation

2017 Train/Val annotations [241MB]

2017 Train images [118K/18GB]

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

/home/ubuntu/data/coco/
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images

Modify the global varaible IMAGE_DATA_FOLDER to change the COCO image folder.

Output files (mixed version: for reproducing experiments)

The following files will be generated by executing the notebook.

/data/MetaShift/COCO-Cat-Dog-indoor-outdoor
├── imageID_to_group.pkl
├── train/
    ├── cat/
    ├── dog/ 
├── val_out_of_domain/
    ├── cat/
    ├── dog/ 

where imageID_to_group.pkl is a dictionary with 4 keys : 'cat(outdoor)', 'cat(outdoor)', 'dog(outdoor)', 'dog(outdoor)'. The corresponding value of each key is the list of the names of the images that belongs to that subset. Modify the global varaible CUSTOM_SPLIT_DATASET_FOLDER to change the destination folder.

Section 4.1: Evaluating Domain Generalization

Run the python script dataset/domain_generalization_cat_dog.py to reproduce the MetaShift domain generalization dataset (based on Visual Genome images) in the paper.

cd dataset/
python domain_generalization_cat_dog.py

Output files (cat vs. dog, unmixed version)

The following files will be generated by executing the python script dataset/domain_generalization_cat_dog.py. Modify the global varaible CUSTOM_SPLIT_DATASET_FOLDER to change the COCO image folder.

/data/MetaShift/Domain-Generalization-Cat-Dog
├── train/
    ├── cat/
        ├── cat(sofa)/              (The cat training data is always cat(\emph{sofa + bed}) ) 
        ├── cat(bed)/               (The cat training data is always cat(\emph{sofa + bed}) )
    ├── dog/
        ├── dog(cabinet)/           (Experiment 1: the dog training data is dog(\emph{cabinet + bed}))
        ├── dog(bed)/               (Experiment 1: the dog training data is dog(\emph{cabinet + bed}))

        ├── dog(bag)/               (Experiment 2: the dog training data is dog(\emph{bag + box}))
        ├── dog(box)/               (Experiment 2: the dog training data is dog(\emph{bag + box}))

        ├── dog(bench)/             (Experiment 3: the dog training data is dog(\emph{bench + bike}))
        ├── dog(bike)/              (Experiment 3: the dog training data is dog(\emph{bench + bike}))

        ├── dog(boat)/              (Experiment 4: the dog training data is dog(\emph{boat + surfboard}))
        ├── dog(surfboard)/         (Experiment 4: the dog training data is dog(\emph{boat + surfboard}))

├── test/
    ├── dog/
        ├── dog(shelf)/             (The test set we used in the paper)
        ├── dog(sofa)/             
        ├── dog(grass)/             
        ├── dog(vehicle)/             
        ├── dog(cap)/                         
    ├── cat/
        ├── cat(shelf)/
        ├── cat(grass)/
        ├── cat(sink)/
        ├── cat(computer)/
        ├── cat(box)/
        ├── cat(book)/

Code for Distribution Shift Experiments

The python script experiments/distribution_shift/main_generalization.py is the entry point for running the distribution shift experiemnts for Section 4.2 (Evaluating Subpopulation Shifts) and Appendix D (Constructing MetaShift from COCO Dataset), and Section 4.1 (Evaluating Domain Generalization). As a running example, the default value for --data in argparse is /data/MetaShift/MetaShift-subpopulation-shift (i.e., for Section 4.2).

clear && CUDA_VISIBLE_DEVICES=3 python main_generalization.py --num-domains 2 --algorithm ERM 
clear && CUDA_VISIBLE_DEVICES=4 python main_generalization.py --num-domains 2 --algorithm GroupDRO 
clear && CUDA_VISIBLE_DEVICES=5 python main_generalization.py --num-domains 2 --algorithm IRM 
clear && CUDA_VISIBLE_DEVICES=6 python main_generalization.py --num-domains 2 --algorithm CORAL 
clear && CUDA_VISIBLE_DEVICES=7 python main_generalization.py --num-domains 2 --algorithm CDANN 

Our code is based on the DomainBed, as introduced in In Search of Lost Domain Generalization. The codebase also provides many additional algorithms. Many thanks to the authors and developers!

Owner
Ph.D. Student in Computer Science at Stanford University
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022