Sinkformers: Transformers with Doubly Stochastic Attention

Overview

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention"

Paper

You will find our paper here.

Compat

This package has been developed and tested with python3.8. It is therefore not guaranteed to work with earlier versions of python.

Install the repository on your machine

This package can easily be installed using pip, with the following command:

pip install numpy
pip install -e .

This will install the package and all its dependencies, listed in requirements.txt.

Each command has to be executed from the root folder sinkformers. Our code is distributed in the different repositories. For each repository, we modify the architectures proposed by replacing the SoftMax attention with a Sinkhorn attention.

Defining a toy Sinkformer for which attention matrices are doubly stochastic

For this example we use a Transformer from the nlp-tutorial library and define its Sinkformer counterpart with the argument "n_it", the number of iterations in Sinkhorn's algorithm.

cd nlp-tutorial/text-classification-transformer
import torch
from model import TransformerEncoder
n_it = 1
print('1 iteration in Sinkhorn corresponds to the original Transformer: ')
transformer = TransformerEncoder(vocab_size=1000, seq_len=512, n_layers=1,  n_heads=1, n_it=n_it, print_attention=True, pad_id=-1)
inp = torch.arange(512).repeat(5, 1)
out = transformer(inp)
n_it = 5
print('5 iteration in Sinkhorn gives a Sinkformer with perfectly doubly stochastic attention matrices: ')
sinkformer = TransformerEncoder(vocab_size=1000, seq_len=512, n_layers=1,  n_heads=1, n_it=n_it, print_attention=True, pad_id=-1)
inp = torch.arange(512).repeat(5, 1)
out = sinkformer(inp)

Then go back to the root:

cd ..
cd ..

Reproducing the experiments of the paper

Comparison of the different normalizations.

python plot_normalizations.py

ModelNet 40 classification. Code adapted from this repository. First, you need to preprocess the ModelNet40 dataset available here. Unzip it and save it under model_net_40/data. Then, preferably on multiple cpus, run

cd model_net_40
python to_h5.py
python formatting.py
cd ..
mv model_net_40/data/ModelNet40_cloud.h5 set_transformer/ModelNet40_cloud.h5
cd set_transformer
mkdir ../dataset
mv ModelNet40_cloud.h5 ../dataset/ModelNet40_cloud.h5
cd ..

Then you can train a Set Sinkformer (or Set Transformer) on ModelNet 40 with

cd set_transformer
python one_expe.py
cd ..

Arguments for one_expe.py can be accessed through

cd set_transformer
python one_expe.py --help
cd ..

Results are saved in the folder set_transformer/results. You can plot the learning curves using the script set_transformer/plot_results.py. The array iterations in the script must contains the different values for n_it used when training.

Sentiment Analysis. Code adapted from this repository. You can also train a Sinkformer for Sentiment Analysis on the IMDb Dataset with the following command (the IMDb Dataset is downloaded automatically).

cd nlp-tutorial/text-classification-transformer
python one_expe.py
cd ..
cd ..

Arguments for one_expe.py can be accessed through

cd nlp-tutorial/text-classification-transformer
python one_expe.py --help
cd ..

Results are saved in the folder nlp-tutorial/text-classification-transformer/results. You can plot the learning curves using the script nlp-tutorial/text-classification-transformer/plot_results.py. The array iterations in the script must contain the different values for "n_it" used when training.

ViT Cats and Dogs classification. Code adapted from this repository. First, you can download the data set here, unzip it and save the train and test repositories at sinkformers/vit-pytorch/examples/data. Then you can run

cd vit-pytorch
python one_expe.py
cd ..

Arguments for one_expe.py can be accessed through

cd vit-pytorch
python one_expe.py --help
cd ..

Results are saved in the folder vit-pytorch/results. You can plot the learning curves using the script vit-pytorch/plot_results.py. The array iterations in the script must contain the different values for "n_it" used when training.

ViT MNIST. The MNIST dataset will be downloaded automatically.

cd vit-pytorch
python one_expe_mnist.py
cd ..

Arguments for one_expe_mnist.py can be accessed through

cd vit-pytorch
python one_expe_mnist.py --help
cd ..

Especially, the argument "ps" is the patch size. Results are saved in the folder vit-pytorch/results_mnist. You can plot the learning curves using the script vit-pytorch/plot_results_mnist.py. The array iterations in the script must contain the different values for "n_it" used when training. The array patches_size in the script must contain the different values for "ps" used when training.

Cite

If you use this code in your project, please cite::

Michael E. Sander, Pierre Ablin, Mathieu Blondel, Gabriel Peyré
Sinkformers: Transformers with Doubly Stochastic Attention
arXiv preprint arXiv:2110.11773, 2021
https://arxiv.org/abs/2110.11773
Owner
Michael E. Sander
Michael E. Sander
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022