AML Command Transfer. A lightweight tool to transfer any command line to Azure Machine Learning Services

Related tags

Command-line Toolsact
Overview

AML Command Transfer (ACT)

ACT is a lightweight tool to transfer any command from the local machine to AML or ITP, both of which are Azure Machine Learning services.

Installation

  1. Download and install the source code

    • install with pip
      pip install "git+https://github.com/microsoft/act.git"
    • or, install by downloading the source code explicitly
      git clone https://github.com/microsoft/act.git
      cd act
      python setup.py build develop
  2. Setup azcopy

    Following this link to download the azcopy and make sure the azcopy is downloaded to ~/code/azcopy/azcopy. That is, you can run the following to check if it is good.

    ~/code/azcopy/azcopy --version

    Make sure it is NOT version 8 or older.

  3. Create the config file of aux_data/configs/vigblob_account.yaml for azure storage. The file format is

    account_name: xxxx
    account_key: xxxx
    sas_token: ?xxxx
    container_name: xxxx

    The SAS token should start with the question mark.

  4. Create the config file of aux_data/aml/config.json to specify the AML cluster information.

    {
        "subscription_id": "xxxx",
        "resource_group": "xxxxx",
        "workspace_name": "xxxxx"
    }

    Make sure to have the double quotes to make it a valid json file.

  5. Create the config file of aux_data/aml/aml.yaml to specify the submission related parameters. Here is one example.

    azure_blob_config_file: null # no need to specify, legacy option
    datastore_name: null # no need to specify. legacy option
    # used to initialize the workspace
    aml_config: aux_data/aml/config.json 
    
    # the following is related with the job submission. If you don't use the
    # submission utility here, you can set any value
    
    config_param: 
       code_path:
           azure_blob_config_file: ./aux_data/configs/vigeastblob_account.yaml # the blob account information
           path: path/to/code.zip # where the zipped source code is
       # you can add multiple key-value pairs to configure the folder mapping.
       # Locally, if the folder name is A, and you want A to be a blobfuse
       # folder in the AML side, you need to set the key as A_folder. For
       # example, if the local folder is datasets, and you want datasets to be a
       # blobfuse folder in AML running, then add a pair with the key being
       # datasets_folder.
       data_folder:
           azure_blob_config_file: ./aux_data/configs/vigeastblob_account.yaml # the blob account information
           # after the source code is unzipped, this folder will be as $ROOT/data
           path: path/to/data
       output_folder:
           azure_blob_config_file: ./aux_data/configs/vigeastblob_account.yaml # the blob account information
           path: path/to/output # this folder will be as $ROOT/output
    # if False, it will use AML's PyTorch estimator, which is not heavily tested here
    use_custom_docker: true
    compute_target: NC24RSV3 
    # if it is the ITP cluster, please set it as true
    aks_compute: false
    docker:
        # the custom docker. If use_custom_docker is False, this will be ignored
        image: amsword/setup:py36pt16
    # any name to specify the experiment name.
    # better to have alias name as part of the experiment name since experiment
    # cannot be deleted and it is better to use fewer experiments
    experiment_name: experiment_name
    # if it is true, you need to run az login --use-device to authorize
    # before job submission. If you don't set it (default), it will prompt website to ask
    # you to do the authentication. It is recommmended to set it as True
    use_cli_auth: True
    # if it is true, it will spawn n processes on each node. n equals #gpu on
    # the node. otherwise, there will be only 1 process on each node. In
    # distributed training, if it is false, you might need to spawn n extra
    # processes by yourself. It is recommended to set it as true (default)
    multi_process: True
    gpu_per_node: 4
    env:
       # the dictionary of env will be as extra environment variables for the
       # job running. you can add multiple env here. Sometimes, the default
       # of NCCL_IB_DISABLE is '1', which will disable IB. Highly recommneded to
       # alwasy set it as '0', even when IB is not available.
       NCCL_IB_DISABLE: '0'
    # optionally, you can specify the option for zip command, which is used by
    # a init to compress the source folder and to upload it.
    zip_options:
        - '-x'
        - '\*src/py-faster-rcnn/\*'
        - '-x'
        - '\*src/CMC/\*'
  6. Set an alias

    alis a='python -m act.aml_client '

Job/Data Management

  1. How to query the job status

    # the last parameter is the run id
    a query jianfw_1563257309_60ce2fc7
    a q jianfw_1563257309_60ce2fc7

    What it does

    1. Download the logs to the folder of ./assets/{RunID}
    2. Print the last 100 lines of the log for ranker 0 if there is.
    3. Print the log paths so that you can copy/paste to open the log
    4. Print the meta data about the job, including status. One example of the output is
    0.2594)  loss_objectness: 0.0500 (0.0625)  loss_rpn_box_reg: 0.0438 (0.0539)  time: 0.9798 (0.9946)  data: 0.0058 (0.0134)  lr: 0.020000  max mem: 3831
    2019-07-16 20:41:29,098.098 trainer.py:138   do_train(): eta: 13:02:24  iter: 42800  speed: 16.1 images/sec  loss: 0.4821 (0.4971)  loss_box_reg: 0.1157 (0.1214)  loss_classifier: 0.2480 (0.2593)  loss_objectness: 0.0545 (0.0625)  loss_rpn_box_reg: 0.0383 (0.0539)  time: 0.9876 (0.9946)  data: 0.0056 (0.0133)  lr: 0.020000  max mem: 3831
    2019-07-16 20:43:07,526.526 trainer.py:138   do_train(): eta: 13:00:43  iter: 42900  speed: 16.3 images/sec  loss: 0.4585 (0.4971)  loss_box_reg: 0.1045 (0.1214)  loss_classifier: 0.2289 (0.2593)  loss_objectness: 0.0551 (0.0625)  loss_rpn_box_reg: 0.0506 (0.0539)  time: 0.9807 (0.9946)  data: 0.0058 (0.0133)  lr: 0.020000  max mem: 3831
    2019-07-16 20:44:46,805.805 trainer.py:138   do_train(): eta: 12:59:03  iter: 43000  speed: 16.1 images/sec  loss: 0.4569 (0.4970)  loss_box_reg: 0.1180 (0.1214)  loss_classifier: 0.2291 (0.2592)  loss_objectness: 0.0479 (0.0625)  loss_rpn_box_reg: 0.0436 (0.0539)  time: 0.9802 (0.9946)  data: 0.0058 (0.0133)  lr: 0.020000  max mem: 3831
    2019-07-16 14:30:26,592.592 aml_client.py:147      query(): log files:
    ['ROOT/assets/jianfw_1563257309_60ce2fc7/azureml-logs/70_driver_log_rank_0.txt',
     'ROOT/assets/jianfw_1563257309_60ce2fc7/azureml-logs/70_driver_log_rank_2.txt',
     ...
     'ROOT/assets/jianfw_1563257309_60ce2fc7/azureml-logs/55_batchai_execution-tvmps_e967edcdb10dd5e65827d221af1f6b246bb7d854790e27d26a677f78efe897ae_d.txt',
     'ROOT/assets/jianfw_1563257309_60ce2fc7/azureml-logs/55_batchai_stdout-job_prep-tvmps_e967edcdb10dd5e65827d221af1f6b246bb7d854790e27d26a677f78efe897ae_d.txt',
     'ROOT/assets/jianfw_1563257309_60ce2fc7/azureml-logs/55_batchai_stdout-job_prep-tvmps_3bbfd76728dd63d173c5cb80221dc4b244254a0fd864c695c8e70bf9460ac7ae_d.txt']
    2019-07-16 14:30:27,096.096 aml_client.py:38 print_run_info(): {'appID': 'jianfw_1563257309_60ce2fc7',
     'appID-s': 'e2fc7',
     'cluster': 'aml',
     'cmd': 'python src/qd/pipeline.py -bp '
            'YWxsX3Rlc3RfZGF0YToKLSB0ZXN0X2RhdGE6IGNvY28yMDE3RnVsbAogIHRlc3Rfc3BsaXQ6IHRlc3QKcGFyYW06CiAgSU5QVVQ6CiAgICBGSVhFRF9TSVpFX0FVRzoKICAgICAgUkFORE9NX1NDQUxFX01BWDogMS41CiAgICAgIFJBTkRPTV9TQ0FMRV9NSU46IDEuMAogICAgVVNFX0ZJWEVEX1NJWkVfQVVHTUVOVEFUSU9OOiB0cnVlCiAgTU9ERUw6CiAgICBGUE46CiAgICAgIFVTRV9HTjogdHJ1ZQogICAgUk9JX0JPWF9IRUFEOgogICAgICBVU0VfR046IHRydWUKICAgIFJQTjoKICAgICAgVVNFX0JOOiB0cnVlCiAgYmFzZV9scjogMC4wMgogIGRhdGE6IGNvY28yMDE3RnVsbAogIGRpc3RfdXJsX3RjcF9wb3J0OiAyMjkyMQogIGVmZmVjdGl2ZV9iYXRjaF9zaXplOiAxNgogIGV2YWx1YXRlX21ldGhvZDogY29jb19ib3gKICBleHBpZDogTV9CUzE2X01heEl0ZXI5MDAwMF9MUjAuMDJfU2NhbGVNYXgxLjVfRnBuR05fRlNpemVfUnBuQk5fSGVhZEdOX1N5bmNCTgogIGV4cGlkX3ByZWZpeDogTQogIGxvZ19zdGVwOiAxMDAKICBtYXhfaXRlcjogOTAwMDAKICBuZXQ6IGUyZV9mYXN0ZXJfcmNubl9SXzUwX0ZQTl8xeF90YmFzZQogIHBpcGVsaW5lX3R5cGU6IE1hc2tSQ05OUGlwZWxpbmUKICBzeW5jX2JuOiB0cnVlCiAgdGVzdF9kYXRhOiBjb2NvMjAxN0Z1bGwKICB0ZXN0X3NwbGl0OiB0ZXN0CiAgdGVzdF92ZXJzaW9uOiAwCnR5cGU6IHBpcGVsaW5lX3RyYWluX2V2YWxfbXVsdGkK',
     'elapsedTime': 15.27,
     'num_gpu': 8,
     'start_time': '2019-07-16T06:14:10.688519Z',
     'status': 'Canceled'}
  2. How to abort/cancel a submitted job

    a abort jianfw_1563257309_60ce2fc7
  3. How to resubmit a job

    a resubmit jianfw_1563257309_60ce2fc7
    a resubmit 60ce2fc7

    The resubmit here will first abort the existing job and then submit it.

  4. How to submit the job

    The first step is to upload the code to azure blob by running the following command

    a init

    Whenever you want your new code change to take effect, you should run the above command. Otherwise, the job will use the previously uploaded code. To execute a command in AML, run the following:

    a submit cmd
    • if you want to run nvidia-smi in AML. The command is
    a submit nvidia-smi
    • If you want to run python train.py --data voc20 in AML, the command will be
    a submit python train.py --data voc20
    • If you want to use 8 GPU, run the command like
    a -n 8 submit python train.py --data voc20

    -n 8 should be placed before submit. Otherwise, it will think -n 8 as part of the cmd

    • If multi_process=true, effectively it runs mpirun --hostfile hostfile_contain_N_node_ips --npernode gpu_per_node cmd
      • the number of nodes x gpu_per_node == the number of gpu requested
      • highly recommended for distributed training/inference
    • If multi_process=false, effectively it runs mpirun --hostfile hostfile_contain_N_node_ips --npernode 1 cmd
      • still, the number of nodes x gpu_per_node == the number of gpu requested
    • The rank needs to be figured out in the code generally. Internally, the service leverages the mpirun to launch the code. The rank or local rank can be figured out through mpirun-specific environment parameters. Sometimes, we also need to know the master node's IP, which can be figured out through
      if 'AZ_BATCH_HOST_LIST' in os.environ:
          return get_aml_mpi_host_names()[0]
      elif 'AZ_BATCHAI_JOB_MASTER_NODE_IP' in os.environ:
          return os.environ['AZ_BATCHAI_JOB_MASTER_NODE_IP']
      There might be other variables as well to find the IP, but we will not list all of them here.
  5. How to switch among multiple clusters For each cluster, it is recommended to have different configuration file. For example, we have two clusters: c1 and c2. Then, the two configuration files should be aux_data/aml/c1.yaml and aux_data/aml/c2.yaml. In this case, we can switch different clusters by the option of -c, e.g.

a -c c1 submit ls
a -c c2 submit nvidia-smi
  1. Data management (optional)

    In the config file, we have a mapping of the local folder and the folder in the azure blob. Thus, we can upload and download the data based on this mapping. If the local folder is also a blobfuse folder, then there is no need to upload/download. Here, we mainly focus on the scenario where the local folder is not a blob fuse folder. Let's say the local folder name is data and we have an entry of data_folder in the config, which tells the data folder will be a blobfuse folder in AML env.

    • list the files starting with some prefix
      a ls data/voc20
      
      Note, the prefix here is data/voc20, which means we should have a definition of data_folder in the configuration
    • upload local file/folder of data/voc20 to azure blob
      a u data/voc20
      
    • download the file/folder of data/coco from blob to local folder
      a d data/coco
      
      Note
      • u means upload; d means download
      • it will automatically identify if it is a file or folder. Thus, there is no need to specify special parameters here.
    • delete a file or folder in the blob defined by the clsuter config
      a rm data/coco
      
      Be careful as you can not revert this operation or cannot recover the data if the deletion is a mistake.
    • transfer the file or folder between two blobs
      a -c eu -f we3v32 u data/voc20
      
      Here, -c means current cluster name. In this case, it will by default find the config through aux_data/aml/eu.yaml. -f means from cluster, which means the data source. Each cluster has a definition of the blob information. Thus, this tool can figure out all details to transfer the data from another cluster's setting to this cluster's blob setting. It will also automatically detect whether to take it like a folder or a file.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
A simple terminal-based localhost chat application written in python

Chat House A simple terminal-based localhost chat application written in python How to Use? Clone the repo git clone https://github.com/heksadecimal/c

Heks 10 Nov 09, 2021
A minimal and ridiculously good looking command-line-interface toolkit.

Pyceo Pyceo is a Python package for creating beautiful, composable, and ridiculously good looking command-line-user-interfaces without having to write

Juan-Pablo Scaletti 21 Mar 25, 2022
A CLI for advanced management of your notes with simple commands

PyNoteManager This is a CLI for advanced management of your notes with simple co

3 Dec 30, 2021
Colors in Terminal - Python Lang

🎨 Colorate - Python 🎨 About Colorate is an Open Source project that makes it easy to use Python color coding in your projects. After downloading the

0110 Henrique 1 Dec 01, 2021
Write Django management command using the click CLI library

Django Click Project information: Automated code metrics: django-click is a library to easily write Django management commands using the click command

Jonathan Stoppani 215 Dec 19, 2022
A python package to display progress of loops to the user

ProgressBars A python package to display progress of loops to the user. Installation This package can be installed using pip. pip install progressbars

Matthias 3 Jan 16, 2022
An interactive cheatsheet tool for the command-line

navi An interactive cheatsheet tool for the command-line. navi allows you to browse through cheatsheets (that you may write yourself or download from

Denis Isidoro 12.2k Dec 31, 2022
A CLI Password Manager made using Python and Postgresql database.

ManageMyPasswords (CLI Edition) A CLI Password Manager made using Python and Postgresql database. Quick Start Guide First Clone The Project git clone

Imira Randeniya 1 Sep 11, 2022
Wordle-textual - Play Wordle from the CLI, using Textual

Wordle, playable from the CLI This project seeks to emulate Wordle in your shell

PhenoM4n4n 3 Mar 29, 2022
Tiny command-line utility for mapping broken keys to other positions.

brokenkey Tiny command-line utility for mapping broken keys to other positions. Installation Clone this repository using git: git clone https://github

0 Oct 04, 2021
Python API and CLI for the ikea IDÃ…SEN desk.

idasen This is a heavily modified fork of rhyst/idasen-controller. The IDÃ…SEN is an electric sitting standing desk with a Linak controller sold by ike

Alex 79 Dec 14, 2022
CPOST is a CLI tool to assist with the proper sizing of Clara Deploy pipelines

CPOST (Clara Pipeline Operator Sizing Tool) Tool to measure resource usage of Clara Platform pipeline operators Cpost is a tool that will help you run

NVIDIA Corporation 5 Sep 27, 2021
Custom 64 bit shellcode encoder that evades detection and removes some common badchars (\x00\x0a\x0d\x20)

x64-shellcode-encoder Custom 64 bit shellcode encoder that evades detection and removes some common badchars (\x00\x0a\x0d\x20) Usage Using a generato

Cole Houston 2 Jan 26, 2022
A python library for parsing multiple types of config files, envvars & command line arguments that takes the headache out of setting app configurations.

parse_it A python library for parsing multiple types of config files, envvars and command line arguments that takes the headache out of setting app co

Naor Livne 97 Oct 22, 2022
A Terminal Client for MySQL with AutoCompletion and Syntax Highlighting.

mycli A command line client for MySQL that can do auto-completion and syntax highlighting. HomePage: http://mycli.net Documentation: http://mycli.net/

dbcli 10.7k Jan 07, 2023
A CLI for creating styled-components for React projects quickly

new-component Ian Cleary (iancleary) Description Welcome! This is a CLI for creating styled-components for React projects quickly. Note: I've rewrote

Ian Cleary (he/him/his) 1 Feb 15, 2022
Arithmos cipher on CLI based

Arithmos Cipher CLI This is the CLI version of Arithmos Cipher. Install pip inst

LyQuid :3 1 Jan 16, 2022
Python package with library and CLI tool for analyzing SeaFlow data

Seaflowpy A Python package for SeaFlow flow cytometer data. Table of Contents Install Read EVT/OPP/VCT Files Command-line Interface Configuration Inte

<a href=[email protected]"> 3 Nov 03, 2021
Python command line tool and python engine to label table fields and fields in data files.

Python command line tool and python engine to label table fields and fields in data files. It could help to find meaningful data in your tables and data files or to find Personal identifable informat

APICrafter 22 Dec 05, 2022
Kubernetes shell: An integrated shell for working with the Kubernetes

kube-shell Kube-shell: An integrated shell for working with the Kubernetes CLI Under the hood kube-shell still calls kubectl. Kube-shell aims to provi

CloudNative Labs 2.2k Jan 08, 2023