A Python package for generating concise, high-quality summaries of a probability distribution

Overview

GoodPoints

A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints is a collection of tools for compressing a distribution more effectively than independent sampling:

  • Given an initial summary of n input points, kernel thinning returns s << n output points with comparable integration error across a reproducing kernel Hilbert space
  • Compress++ reduces the runtime of generic thinning algorithms with minimal loss in accuracy

Installation

To install the goodpoints package, use the following pip command:

pip install goodpoints

Getting started

The primary kernel thinning function is thin in the kt module:

from goodpoints import kt
coreset = kt.thin(X, m, split_kernel, swap_kernel, delta=0.5, seed=123, store_K=False)
    """Returns kernel thinning coreset of size floor(n/2^m) as row indices into X
    
    Args:
      X: Input sequence of sample points with shape (n, d)
      m: Number of halving rounds
      split_kernel: Kernel function used by KT-SPLIT (typically a square-root kernel, krt);
        split_kernel(y,X) returns array of kernel evaluations between y and each row of X
      swap_kernel: Kernel function used by KT-SWAP (typically the target kernel, k);
        swap_kernel(y,X) returns array of kernel evaluations between y and each row of X
      delta: Run KT-SPLIT with constant failure probabilities delta_i = delta/n
      seed: Random seed to set prior to generation; if None, no seed will be set
      store_K: If False, runs O(nd) space version which does not store kernel
        matrix; if True, stores n x n kernel matrix
    """

For example uses, please refer to the notebook examples/kt/run_kt_experiment.ipynb.

The primary Compress++ function is compresspp in the compress module:

from goodpoints import compress
coreset = compress.compresspp(X, halve, thin, g)
    """Returns Compress++(g) coreset of size sqrt(n) as row indices into X

    Args: 
        X: Input sequence of sample points with shape (n, d)
        halve: Function that takes in an (n', d) numpy array Y and returns 
          floor(n'/2) distinct row indices into Y, identifying a halved coreset
        thin: Function that takes in an (n', d) numpy array Y and returns
          2^g sqrt(n') row indices into Y, identifying a thinned coreset
        g: Oversampling factor
    """

For example uses, please refer to the code examples/compress/construct_compresspp_coresets.py.

Examples

Code in the examples directory uses the goodpoints package to recreate the experiments of the following research papers.


Kernel Thinning

@article{dwivedi2021kernel,
  title={Kernel Thinning},
  author={Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2105.05842},
  year={2021}
}
  1. The script examples/kt/submit_jobs_run_kt.py reproduces the vignette experiments of Kernel Thinning on a Slurm cluster by executing examples/kt/run_kt_experiment.ipynb with appropriate parameters. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb, where in the last code block we report the median heuristic based bandwidth parameteters (along with the code to compute it).
  2. After all results have been generated, the notebook plot_results.ipynb can be used to reproduce the figures of Kernel Thinning.

Generalized Kernel Thinning

@article{dwivedi2021generalized,
  title={Generalized Kernel Thinning},
  author={Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2110.01593},
  year={2021}
}
  1. The script examples/gkt/submit_gkt_jobs.py reproduces the vignette experiments of Generalized Kernel Thinning on a Slurm cluster by executing examples/gkt/run_generalized_kt_experiment.ipynb with appropriate parameters. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb.
  2. Once the coresets are generated, examples/gkt/compute_test_function_errors.ipynb can be used to generate integration errors for different test functions.
  3. After all results have been generated, the notebook examples/gkt/plot_gkt_results.ipynb can be used to reproduce the figures of Generalized Kernel Thinning.

Distribution Compression in Near-linear Time

@article{shetti2021distribution,
  title={Distribution Compression in Near-linear Time},
  author={Abhishek Shetty and Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2111.07941},
  year={2021}
}
  1. The notebook examples/compress/script_to_deploy_jobs.ipynb reproduces the experiments of Distribution Compression in Near-linear Time in the following manner: 1a. It generates various coresets and computes their mmds by executing examples/compress/construct_{THIN}_coresets.py for THIN in {compresspp, kt, st, herding} with appropriate parameters, where the flag kt stands for kernel thinning, st stands for standard thinning (choosing every t-th point), and herding refers to kernel herding. 1b. It compute the runtimes of different algorithms by executing examples/compress/run_time.py. 1c. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb. 1d. The notebook currently deploys these jobs on a slurm cluster, but setting deploy_slurm = False in examples/compress/script_to_deploy_jobs.ipynb will submit the jobs as independent python calls on terminal.
  2. After all results have been generated, the notebook examples/compress/plot_compress_results.ipynb can be used to reproduce the figures of Distribution Compression in Near-linear Time.
  3. The script examples/compress/construct_compresspp_coresets.py contains the function recursive_halving that converts a halving algorithm into a thinning algorithm by recursively halving.
  4. The script examples/compress/construct_herding_coresets.py contains the herding function that runs kernel herding algorithm introduced by Yutian Chen, Max Welling, and Alex Smola.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022