CLEAR algorithm for multi-view data association

Related tags

Deep Learningclear
Overview

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm

The Matlab, Python, and C++ implementation of the CLEAR algorithm, as described in [1].

[1] K. Fathian, K. Khosoussi, Y. Tian, P. Lusk, J.P. How, "CLEAR: A Consistent Lifting, Embedding, and Alignment Rectification Algorithm for Multi-View Data Association", arXiv:1902.02256, 2019.

Video:

A video summary of the CLEAR algorithm:

CLEAR

Matlab syntax:

[Pout, Puni, numObjEst] = CLEAR(Pin, numSmp, numAgt)

Description:

[Pout, Puni, numObjEst] = CLEAR(Pin, numSmp, numAgt) applies the CLEAR algorithm on the aggregate association matrix Pin and returns the cycle consistent association matrix Pout. Variable numAgt is the number of views or agents, and numSmp is a vector that contains the number of observations at each view. CLEAR further returns lifting associations to universe Puni and the estimated size of universe numObjEst.

Example:

Run "Example.m" for a simple example that shows how the CLEAR algorithm is called.

Options and tips:

If the number of objects is known, call the algorithm with the option

Pout = CLEAR(Pin, numSmp, numAgt, 'numobj', numObj)

where numObj is the number of objects. Otherwise, the algorithm automatically estimates the number of objects from the spectrum of the normalized Laplacian matrix.

Synthetic comparisons:

Run files in the "Synthetic_Comparisons" folder to compare CLEAR with state-of-the-art algorithms.

Copyright:

If this program is useful, please consider citing [1]. This package is tested in Matlab 2018a - 2019a, 64-bit Windows 10 OS. We noted that using an older version of Matlab may cause an error due to the incompatibility of some functions.

This program is free software: you can redistribute and/or modify it under the terms of the GNU lesser General Public License, either version 3, or any later version. This program is distributed in the hope that it will be useful, but without any warranty.

(c) Kaveh Fathian, Kasra Khosoussi, Yulun Tian, Parker Lusk, Jonathan How. 2020.

Owner
MIT Aerospace Controls Laboratory
see more code at https://gitlab.com/mit-acl
MIT Aerospace Controls Laboratory
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023