Rational Activation Functions - Replacing Padé Activation Units

Overview

ArXiv Badge PWC

Logo

Rational Activations - Learnable Rational Activation Functions

First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Functions in Deep Neural Network.

1. About Rational Activation Functions

Rational Activations are a novel learnable activation functions. Rationals encode activation functions as rational functions, trainable in an end-to-end fashion using backpropagation and can be seemingless integrated into any neural network in the same way as common activation functions (e.g. ReLU).

Rationals: Beyond known Activation Functions

Rational can approximate any known activation function arbitrarily well (cf. Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks): rational_approx (*the dashed lines represent the rational approximation of every function)

Rational are made to be optimized by the gradient descent, and can discover good properties of activation functions after learning (cf Recurrent Rational Networks): rational_properties

Rationals evaluation on different tasks

Rational matches or outperforms common activations in terms of predictive performance and training time. And, therefore relieves the network designer of having to commit to a potentially underperforming choice.

  • Recurrent Rational Functions have then been introduced in Recurrent Rational Networks, and both Rational and Recurrent Rational Networks are evaluated on RL Tasks. rl_scores :octocat: See rational_rl github repo

2. Dependencies

We support MxNet, Keras, and PyTorch. Instructions for MxNet can be found here. Instructions for Keras here. The following README instructions assume that you want to use rational activations in PyTorch.

PyTorch>=1.4.0
CUDA>=10.2

3. Installation

To install the rational_activations module, you can use pip, but:

‼️ rational_activations is currently compatible with torch==1.9.0 by default ‼️

For non TensorFlow and MXNet users, or if the command bellow don't work the package listed bellow don't work on your machine:

TensorFlow or MXNet (and torch==1.9.0)

 pip3 install -U pip wheel
 pip3 install torch rational_activations

Other CUDA/Pytorch

For any other torch version, please install from source: Modify requirements.txt to your corresponding torch version

 pip3 install airspeed  # to compile the CUDA templates
 git clone https://github.com/ml-research/rational_activations.git
 cd rational_activations
 pip3 install -r requirements.txt --user
 python3 setup.py install --user

If you encounter any trouble installing rational, please contact this person.

4. Using Rational in Neural Networks

Rational can be integrated in the same way as any other common activation function.

import torch
from rational.torch import Rational

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    Rational(), # e.g. instead of torch.nn.ReLU()
    torch.nn.Linear(H, D_out),
)

Please also check the documentation 📔

5. Cite Us in your paper

@inproceedings{molina2019pade,
  title={Pad{\'e} Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks},
  author={Molina, Alejandro and Schramowski, Patrick and Kersting, Kristian},
  booktitle={International Conference on Learning Representations},
  year={2019}
}

@article{delfosse2021recurrent,
  title={Recurrent Rational Networks},
  author={Delfosse, Quentin and Schramowski, Patrick and Molina, Alejandro and Kersting, Kristian},
  journal={arXiv preprint arXiv:2102.09407},
  year={2021}
}

@misc{delfosse2020rationals,
  author = {Delfosse, Quentin and Schramowski, Patrick and Molina, Alejandro and Beck, Nils and Hsu, Ting-Yu and Kashef, Yasien and Rüling-Cachay, Salva and Zimmermann, Julius},
  title = {Rational Activation functions},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished={\url{https://github.com/ml-research/rational_activations}}
}
Owner
[email protected]
Machine Learning Group at TU Darmstadt
<a href=[email protected]">
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022