Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Overview

Expressive Power of Invariant and Equivaraint Graph Neural Networks

In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alignment problem. This code was used to derive the practical results in the following paper:

Waiss Azizian, Marc Lelarge. Expressive Power of Invariant and Equivariant Graph Neural Networks, ICLR 2021.

arXiv OpenReview

Problem: alignment of graphs

The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. Here we consider a noisy version of this problem: the two graphs below are noisy versions of a parent graph. There is no strict isomorphism between them. Can we still match the vertices of graph 1 with the corresponding vertices of graph 2?

graph 1 graph 2

With our GNN, we obtain the following results: green vertices are well paired vertices and red vertices are errors. Both graphs are now represented using the layout from the right above but the color of the vertices are the same on both sides. At inference, our GNN builds node embedding for the vertices of graphs 1 and 2. Finally a node of graph 1 is matched to its most similar node of graph 2 in this embedding space.

graph 1 graph 2

Below, on the left, we plot the errors made by our GNN: errors made on red vertices are represented by links corresponding to a wrong matching or cycle; on the right, we superpose the two graphs: green edges are in both graphs (they correspond to the parent graph), orange edges are in graph 1 only and blue edges are in graph 2 only. We clearly see the impact of the noisy edges (orange and blue) as each red vertex (corresponding to an error) is connected to such edges (except the isolated red vertex).

Wrong matchings/cycles Superposing the 2 graphs

To measure the performance of our GNN, instead of looking at vertices, we can look at edges. On the left below, we see that our GNN recovers most of the green edges present in graphs 1 and 2 (edges from the parent graph). On the right, mismatched edges correspond mostly to noisy (orange and blue) edges (present in only one of the graphs 1 or 2).

Matched edges Mismatched edges

Training GNN for the graph alignment problem

For the training of our GNN, we generate synthetic datasets as follows: first sample the parent graph and then add edges to construct graphs 1 and 2. We obtain a dataset made of pairs of graphs for which we know the true matching of vertices. We then use a siamese encoder as shown below where the same GNN (i.e. shared weights) is used for both graphs. The node embeddings constructed for each graph are then used to predict the corresponding permutation index by taking the outer product and a softmax along each row. The GNN is trained with a standard cross-entropy loss. At inference, we can add a LAP solver to get a permutation from the matrix .

Various architectures can be used for the GNN and we find that FGNN (first introduced by Maron et al. in Provably Powerful Graph Networks NeurIPS 2019) are best performing for our task. In our paper Expressive Power of Invariant and Equivariant Graph Neural Networks, we substantiate these empirical findings by proving that FGNN has a better power of approximation among all equivariant architectures working with tensors of order 2 presented so far (this includes message passing GNN or linear GNN).

Results

Each line corresponds to a model trained at a given noise level and shows its accuracy across all noise levels. We see that pretrained models generalize very well at noise levels unseen during the training.

We provide a simple notebook to reproduce this result for the pretrained model released with this repository (to run the notebook create a ipykernel with name gnn and with the required dependencies as described below).

We refer to our paper for comparisons with other algorithms (message passing GNN, spectral or SDP algorithms).

To cite our paper:

@inproceedings{azizian2020characterizing,
  title={Expressive power of invariant and equivariant graph neural networks},
  author={Azizian, Wa{\"\i}ss and Lelarge, Marc},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=lxHgXYN4bwl}
}

Overview of the code

Project structure

.
├── loaders
|   └── dataset selector
|   └── data_generator.py # generating random graphs
|   └── test_data_generator.py
|   └── siamese_loader.py # loading pairs 
├── models
|   └── architecture selector
|   └── layers.py # equivariant block
|   └── base_model.py # powerful GNN Graph -> Graph
|   └── siamese_net.py # GNN to match graphs
├── toolbox
|   └── optimizer and losses selectors
|   └── logger.py  # keeping track of most results during training
|   └── metrics.py # computing scores
|   └── losses.py  # computing losses
|   └── optimizer.py # optimizers
|   └── utility.py
|   └── maskedtensor.py # Tensor-like class to handle batches of graphs of different sizes
├── commander.py # main file from the project serving for calling all necessary functions for training and testing
├── trainer.py # pipelines for training and validation
├── eval.py # testing models

Dependencies

Dependencies are listed in requirements.txt. To install, run

pip install -r requirements.txt

Training

Run the main file commander.py with the command train

python train commander.py

To change options, use Sacred command-line interface and see default.yaml for the configuration structure. For instance,

python commander.py train with cpu=No data.generative_model=Regular train.epoch=10 

You can also copy default.yaml and modify the configuration parameters there. Loading the configuration in other.yaml (or other.json) can be done with

python commander.py train with other.yaml

See Sacred documentation for an exhaustive reference.

To save logs to Neptune, you need to provide your own API key via the dedicated environment variable.

The model is regularly saved in the folder runs.

Evaluating

There are two ways of evaluating the models. If you juste ran the training with a configuration conf.yaml, you can simply do,

python commander.py eval with conf.yaml

You can omit with conf.yaml if you are using the default configuartion.

If you downloaded a model with a config file from here, you can edit the section test_data of this config if you wish and then run,

python commander.py eval with /path/to/config model_path=/path/to/model.pth.tar
Comments
  • need 2 different model_path variables

    need 2 different model_path variables

    When not starting anew, model_path_load should contain the path to the model. model_path should then be the path to save the new learned model. Right now, the model_path_load is used for the evaluation!

    bug 
    opened by mlelarge 1
  • Unify the different problems

    Unify the different problems

    The previous commands for training and evaluation should still work the same, even though it uses a different configuration file at the beginning. It still uses Sacred the same way for the commander.py. The problem can be switched from the config file. The main change in the previous code is the use of the Helper class (in toolbox/helper.py) which is the class that coordinates each problem (see the file for further info).

    Also added the 'article_commander.py' which generates the data for comparison between planted problems and the corresponding NP-problem, which works in a similar way to commander.py.

    opened by MauTrib 1
  • Reorganize a commander.py

    Reorganize a commander.py

    This PR tries to unify the train and eval CLI wth the use of a single config file. See default.yaml for the result and the README for more information. Please, don't hesitate to comment on changes you don't approve or dislike. Bests,

    opened by wazizian 1
  • Fix convention for tensor shapes

    Fix convention for tensor shapes

    Hi! I am modifying the code so the same convention for the shape of tensors is used everywhere (see PR). But I'm not sure we have chosen the right one. You and we have chosen(bs, n_vertices, n_vertices, features)but Marron preferred (bs, features, n_vertices, n_vertices). Indeed the later matches Pytorch's convention for images and so makes convolutions natural. In one case, MLPs and blocks have to be adapted and in the other, it is the data generation process, so it is a similar amount of work. What do you think ? Bests, Waïss

    opened by wazizian 1
  • added normalization + embeddings

    added normalization + embeddings

    I modified slightly the architecture and training seems much better and more stable. I added a first embedding layer and BN after multiplication and at the output.

    opened by mlelarge 0
Releases(QAP)
  • QAP(Jan 21, 2021)

    Config: "data": {"num_examples_train": 20000, "num_examples_val": 1000, "generative_model": "Regular", "noise_model": "ErdosRenyi", "edge_density": 0.2, "n_vertices": 50, "vertex_proba": 1.0, "noise": 0.15, "path_dataset": "dataset"}, "train": {"epoch": 50, "batch_size": 32, "lr": 0.0001, "scheduler_step": 5, "scheduler_decay": 0.9, "print_freq": 100, "loss_reduction": "mean"}, "arch": {"arch": "Siamese_Model", "model_name": "Simple_Node_Embedding", "num_blocks": 2, "original_features_num": 2, "in_features": 64, "out_features": 64, "depth_of_mlp": 3}

    Source code(tar.gz)
    Source code(zip)
    config.json(601 bytes)
    model_best.pth.tar(333.26 KB)
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022