LETR: Line Segment Detection Using Transformers without Edges

Related tags

Deep LearningLETR
Overview

LETR: Line Segment Detection Using Transformers without Edges

Introduction

This repository contains the official code and pretrained models for Line Segment Detection Using Transformers without Edges. Yifan Xu*, Weijian Xu*, David Cheung, and Zhuowen Tu. CVPR2021 (Oral)

In this paper, we present a joint end-to-end line segment detection algorithm using Transformers that is post-processing and heuristics-guided intermediate processing (edge/junction/region detection) free. Our method, named LinE segment TRansformers (LETR), takes advantages of having integrated tokenized queries, a self-attention mechanism, and encoding-decoding strategy within Transformers by skipping standard heuristic designs for the edge element detection and perceptual grouping processes. We equip Transformers with a multi-scale encoder/decoder strategy to perform fine-grained line segment detection under a direct endpoint distance loss. This loss term is particularly suitable for detecting geometric structures such as line segments that are not conveniently represented by the standard bounding box representations. The Transformers learn to gradually refine line segments through layers of self-attention.

Model Pipeline

Changelog

05/07/2021: Code for LETR Basic Usage Demo are released.

04/30/2021: Code and pre-trained checkpoint for LETR are released.

Results and Checkpoints

Name sAP10 sAP15 sF10 sF15 URL
Wireframe 65.6 68.0 66.1 67.4 LETR-R101
YorkUrban 29.6 32.0 40.5 42.1 LETR-R50

Reproducing Results

Step1: Code Preparation

git clone https://github.com/mlpc-ucsd/LETR.git

Step2: Environment Installation

mkdir -p data
mkdir -p evaluation/data
mkdir -p exp


conda create -n letr python anaconda
conda activate letr
conda install -c pytorch pytorch torchvision
conda install cython scipy
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
pip install docopt

Step3: Data Preparation

To reproduce our results, you need to process two datasets, ShanghaiTech and YorkUrban. Files located at ./helper/wireframe.py and ./helper/york.py are both modified based on the code from L-CNN, which process the raw data from download.

  • ShanghaiTech Train Data
    • To Download (modified based on from L-CNN)
      cd data
      bash ../helper/gdrive-download.sh 1BRkqyi5CKPQF6IYzj_dQxZFQl0OwbzOf wireframe_raw.tar.xz
      tar xf wireframe_raw.tar.xz
      rm wireframe_raw.tar.xz
      python ../helper/wireframe.py ./wireframe_raw ./wireframe_processed
      
  • YorkUrban Train Data
    • To Download
      cd data
      wget https://www.dropbox.com/sh/qgsh2audfi8aajd/AAAQrKM0wLe_LepwlC1rzFMxa/YorkUrbanDB.zip
      unzip YorkUrbanDB.zip 
      python ../helper/york.py ./YorkUrbanDB ./york_processed
      
  • Processed Evaluation Data
    bash ./helper/gdrive-download.sh 1T4_6Nb5r4yAXre3lf-zpmp3RbmyP1t9q ./evaluation/data/wireframe.tar.xz
    bash ./helper/gdrive-download.sh 1ijOXv0Xw1IaNDtp1uBJt5Xb3mMj99Iw2 ./evaluation/data/york.tar.xz
    tar -vxf ./evaluation/data/wireframe.tar.xz -C ./evaluation/data/.
    tar -vxf ./evaluation/data/york.tar.xz -C ./evaluation/data/.
    rm ./evaluation/data/wireframe.tar.xz
    rm ./evaluation/data/york.tar.xz

Step4: Train Script Examples

  1. Train a coarse-model (a.k.a. stage1 model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a0_train_stage1_res50.sh  res50_stage1 # LETR-R50  
    bash script/train/a1_train_stage1_res101.sh res101_stage1 # LETR-R101 
  2. Train a fine-model (a.k.a. stage2 model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a2_train_stage2_res50.sh  res50_stage2  # LETR-R50
    bash script/train/a3_train_stage2_res101.sh res101_stage2 # LETR-R101 
  3. Fine-tune the fine-model with focal loss (a.k.a. stage2_focal model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a4_train_stage2_focal_res50.sh   res50_stage2_focal # LETR-R50
    bash script/train/a5_train_stage2_focal_res101.sh  res101_stage2_focal # LETR-R101 

Step5: Evaluation

  1. Evaluate models.
    # Evaluate sAP^10, sAP^15, sF^10, sF^15 (both Wireframe and YorkUrban datasets).
    bash script/evaluation/eval_stage1.sh [exp name]
    bash script/evaluation/eval_stage2.sh [exp name]
    bash script/evaluation/eval_stage2_focal.sh [exp name]

Citation

If you use this code for your research, please cite our paper:

@InProceedings{Xu_2021_CVPR,
    author    = {Xu, Yifan and Xu, Weijian and Cheung, David and Tu, Zhuowen},
    title     = {Line Segment Detection Using Transformers Without Edges},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {4257-4266}
}

Acknowledgments

This code is based on the implementations of DETR: End-to-End Object Detection with Transformers.

Owner
mlpc-ucsd
mlpc-ucsd
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022