You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

Related tags

Deep LearningYOSO
Overview

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling attention mechanism based on Locality Sensitive Hash- ing (LSH), decreases the quadratic complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of LSH (to enable deployment on GPU architectures).

Requirements

docker, nvidia-docker

Start Docker Container

Under YOSO folder, run

docker run --ipc=host --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES= -v "$PWD:/workspace" -it mlpen/transformers:4

For Nvidia's 30 series GPU, run

docker run --ipc=host --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES= -v "$PWD:/workspace" -it mlpen/transformers:5

Then, the YOSO folder is mapped to /workspace in the container.

BERT

Datasets

To be updated

Pre-training

To start pre-training of a specific configuration: create a folder YOSO/BERT/models/ (for example, bert-small) and write YOSO/BERT/models/ /config.json to specify model and training configuration, then under YOSO/BERT folder, run

python3 run_pretrain.py --model 
   

   

The command will create a YOSO/BERT/models/ /model folder holding all checkpoints and log file.

Pre-training from Different Model's Checkpoint

Copy a checkpoint (one of .model or .cp file) from YOSO/BERT/models/ /model folder to YOSO/BERT/models/ folder and add a key-value pair in YOSO/BERT/models/ /config.json : "from_cp": " " . One example is shown in YOSO/BERT/models/bert-small-4096/config.json. This procedure also works for extending the max sequence length of a model (For example, use bert-small pre-trained weights as initialization for bert-small-4096).

GLUE Fine-tuning

Under YOSO/BERT folder, run

python3 run_glue.py --model 
   
     --batch_size 
    
      --lr 
     
       --task 
      
        --checkpoint 
        
       
      
     
    
   

For example,

python3 run_glue.py --model bert-small --batch_size 32 --lr 3e-5 --task MRPC --checkpoint cp-0249.model

The command will create a log file in YOSO/BERT/models/ /model .

Long Range Arena Benchmark

Datasets

To be updated

Run Evaluations

To start evaluation of a specific model on a task in LRA benchmark:

  • Create a folder YOSO/LRA/models/ (for example, softmax)
  • Write YOSO/LRA/models/ /config.json to specify model and training configuration

Under YOSO/LRA folder, run

python3 run_task.py --model 
   
     --task 
    

    
   

For example, run

python3 run_task.py --model softmax --task listops

The command will create a YOSO/LRA/models/ /model folder holding the best validation checkpoint and log file. After completion, the test set accuracy can be found in the last line of the log file.

RoBERTa

Datasets

To be updated

Pre-training

To start pretraining of a specific configuration:

  • Create a folder YOSO/RoBERTa/models/ (for example, bert-small)
  • Write YOSO/RoBERTa/models/ /config.json to specify model and training configuration

Under YOSO/RoBERTa folder, run

python3 run_pretrain.py --model 
   

   

For example, run

python3 run_pretrain.py --model bert-small

The command will create a YOSO/RoBERTa/models/ /model folder holding all checkpoints and log file.

GLUE Fine-tuning

To fine-tune model on GLUE tasks:

Under YOSO/RoBERTa folder, run

python3 run_glue.py --model 
   
     --batch_size 
    
      --lr 
     
       --task 
      
        --checkpoint 
        
       
      
     
    
   

For example,

python3 run_glue.py --model bert-small --batch_size 32 --lr 3e-5 --task MRPC --checkpoint 249

The command will create a log file in YOSO/RoBERTa/models/ /model .

Citation

@article{zeng2021yoso,
  title={You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling},
  author={Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh},
  booktitle={Proceedings of the International Conference on Machine Learning},
  year={2021}
}
Owner
Zhanpeng Zeng
Zhanpeng Zeng
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022