A library to access OpenStreetMap related services

Overview

OSMPythonTools

The python package OSMPythonTools provides easy access to OpenStreetMap (OSM) related services, among them an Overpass endpoint, Nominatim, and the OSM API.

Installation

To install OSMPythonTools, you will need python3 and pip (How to install pip). Then execute:

pip install OSMPythonTools

On some operating systems, pip for python3 is named pip3:

pip3 install OSMPythonTools

Example 1

Which object does the way with the ID 5887599 represent?

We can use the OSM API to answer this question:

from OSMPythonTools.api import Api
api = Api()
way = api.query('way/5887599')

The resulting object contains information about the way, which can easily be accessed:

way.tag('building')
# 'castle'
way.tag('architect')
# 'Johann Lucas von Hildebrandt'
way.tag('website')
# 'http://www.belvedere.at'

Example 2

What is the English name of the church called ‘Stephansdom’, what address does it have, and which of which denomination is the church?

We use the Overpass API to query the corresponding data:

from OSMPythonTools.overpass import Overpass
overpass = Overpass()
result = overpass.query('way["name"="Stephansdom"]; out body;')

This time, the result is a number of objects, which can be accessed by result.elements(). We just pick the first one:

stephansdom = result.elements()[0]

Information about the church can now easily be accessed:

stephansdom.tag('name:en')
# "Saint Stephen's Cathedral"
'%s %s, %s %s' % (stephansdom.tag('addr:street'), stephansdom.tag('addr:housenumber'), stephansdom.tag('addr:postcode'), stephansdom.tag('addr:city'))
# 'Stephansplatz 3, 1010 Wien'
stephansdom.tag('building')
# 'cathedral'
stephansdom.tag('denomination')
# 'catholic'

Example 3

How many trees are in the OSM data of Vienna? And how many trees have there been in 2013?

This time, we have to first resolve the name ‘Vienna’ to an area ID:

from OSMPythonTools.nominatim import Nominatim
nominatim = Nominatim()
areaId = nominatim.query('Vienna, Austria').areaId()

This area ID can now be used to build the corresponding query:

from OSMPythonTools.overpass import overpassQueryBuilder, Overpass
overpass = Overpass()
query = overpassQueryBuilder(area=areaId, elementType='node', selector='"natural"="tree"', out='count')
result = overpass.query(query)
result.countElements()
# 137830

There are 134520 trees in the current OSM data of Vienna. How many have there been in 2013?

result = overpass.query(query, date='2013-01-01T00:00:00Z', timeout=60)
result.countElements()
# 127689

Example 4

Where are waterbodies located in Vienna?

Again, we have to resolve the name ‘Vienna’ before running the query:

from OSMPythonTools.nominatim import Nominatim
nominatim = Nominatim()
areaId = nominatim.query('Vienna, Austria').areaId()

The query can be built like in the examples before. This time, however, the argument includeGeometry=True is provided to the overpassQueryBuilder in order to let him generate a query that downloads the geometry data.

from OSMPythonTools.overpass import overpassQueryBuilder, Overpass
overpass = Overpass()
query = overpassQueryBuilder(area=areaId, elementType=['way', 'relation'], selector='"natural"="water"', includeGeometry=True)
result = overpass.query(query)

Next, we can exemplarily choose one random waterbody (the first one of the download ones) and compute its geometry like follows:

firstElement = result.elements()[0]
firstElement.geometry()
# {"coordinates": [[[16.498671, 48.27628], [16.4991, 48.276345], ... ]], "type": "Polygon"}

Observe that the resulting geometry is provided in the GeoJSON format.

Example 5

How did the number of trees in Berlin, Paris, and Vienna change over time?

Before we can answer the question, we have to import some modules:

from collections import OrderedDict
from OSMPythonTools.data import Data, dictRangeYears, ALL
from OSMPythonTools.overpass import overpassQueryBuilder, Overpass

The question has two ‘dimensions’: the dimension of time, and the dimension of different cities:

dimensions = OrderedDict([
    ('year', dictRangeYears(2013, 2017.5, 1)),
    ('city', OrderedDict({
        'berlin': 'Berlin, Germany',
        'paris': 'Paris, France',
        'vienna': 'Vienna, Austria',
    })),
])

We have to define how we fetch the data. We again use Nominatim and the Overpass API to query the data (it can take some time to perform this query the first time!):

overpass = Overpass()
def fetch(year, city):
    areaId = nominatim.query(city).areaId()
    query = overpassQueryBuilder(area=areaId, elementType='node', selector='"natural"="tree"', out='count')
    return overpass.query(query, date=year, timeout=60).countElements()
data = Data(fetch, dimensions)

We can now easily generate a plot from the result:

data.plot(city=ALL, filename='example4.png')

data.plot(city=ALL, filename='example4.png')

Alternatively, we can generate a table from the result

data.select(city=ALL).getCSV()
# year,berlin,paris,vienna
# 2013.0,10180,1936,127689
# 2014.0,17971,26905,128905
# 2015.0,28277,90599,130278
# 2016.0,86769,103172,132293
# 2017.0,108432,103246,134616

More examples can be found inside the documentation of the modules.

Usage

The following modules are available (please click on their names to access further documentation):

Please refer to the general remarks page if you have further questions related to OSMPythonTools in general or functionality that the several modules have in common.

Observe the breaking changes as included in the version history.

Logging

This library is a little bit more verbose than other Python libraries. The good reason behind is that the OpenStreetMap, the Nominatim, and the Overpass servers experience a heavy load already and their resources should be used carefully. In order to make you, the user of this library, aware of when OSMPythonTools accesses these servers, corresponding information is logged by default. In case you want to suppress these messages, you have to insert the following lines after the import of OSMPythonTools:

import logging
logging.getLogger('OSMPythonTools').setLevel(logging.ERROR)

Please note that suppressing the messages means that you have to ensure on your own that you do not overuse the provided services and that you stick to their fair policy guidelines.

Tests

You can test the package by running

pytest --verbose

Please note that the tests might run very long (several minutes) because the overpass server will most likely defer the downloads.

Author

This application is written and maintained by Franz-Benjamin Mocnik, [email protected].

(c) by Franz-Benjamin Mocnik, 2017-2021.

The code is licensed under the GPL-3.

Owner
Franz-Benjamin Mocnik
Franz-Benjamin Mocnik
Stitch image tiles into larger composite TIFs

untiler Utility to take a directory of {z}/{x}/{y}.(jpg|png) tiles, and stitch into a scenetiff (tif w/ exact merc tile bounds). Future versions will

Mapbox 38 Dec 16, 2022
A modern, geometric typeface by @chrismsimpson (last commit @ 85fa625 Jun 9, 2020 before deletion)

Metropolis A modern, geometric typeface. Influenced by other popular geometric, minimalist sans-serif typefaces of the new millenium. Designed for opt

Darius 183 Dec 25, 2022
framework for large-scale SAR satellite data processing

pyroSAR A Python Framework for Large-Scale SAR Satellite Data Processing The pyroSAR package aims at providing a complete solution for the scalable or

John Truckenbrodt 389 Dec 21, 2022
geobeam - adds GIS capabilities to your Apache Beam and Dataflow pipelines.

geobeam adds GIS capabilities to your Apache Beam pipelines. What does geobeam do? geobeam enables you to ingest and analyze massive amounts of geospa

Google Cloud Platform 61 Nov 08, 2022
Rasterio reads and writes geospatial raster datasets

Rasterio Rasterio reads and writes geospatial raster data. Geographic information systems use GeoTIFF and other formats to organize and store gridded,

Mapbox 1.9k Jan 07, 2023
Creates 3D geometries from 2D vector graphics, for use in geodynamic models

geomIO - creating 3D geometries from 2D input This is the Julia and Python version of geomIO, a free open source software to generate 3D volumes and s

3 Feb 01, 2022
Documentation and samples for ArcGIS API for Python

ArcGIS API for Python ArcGIS API for Python is a Python library for working with maps and geospatial data, powered by web GIS. It provides simple and

Esri 1.4k Dec 30, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

34 Dec 27, 2022
Daily social mapping project in November 2021. Maps made using PyGMT whenever possible.

Daily social mapping project in November 2021. Maps made using PyGMT whenever possible.

Wei Ji 20 Nov 24, 2022
Mmdb-server - An open source fast API server to lookup IP addresses for their geographic location

mmdb-server mmdb-server is an open source fast API server to lookup IP addresses

Alexandre Dulaunoy 67 Nov 25, 2022
Deal with Bing Maps Tiles and Pixels / WGS 84 coordinates conversions, and generate grid Shapefiles

PyBingTiles This is a small toolkit in order to deal with Bing Tiles, used i.e. by Facebook for their Data for Good datasets. Install Clone this repos

Shoichi 1 Dec 08, 2021
A set of utility functions for working with GeoJSON annotations in Kaibu

kaibu-utils A set of utility functions for working with Kaibu. Create a new repository Create a new repository and select imjoy-team/imjoy-python-temp

ImJoy Team 0 Dec 12, 2021
Streamlit Component for rendering Folium maps

streamlit-folium This Streamlit Component is a work-in-progress to determine what functionality is desirable for a Folium and Streamlit integration. C

Randy Zwitch 224 Dec 30, 2022
A public data repository for datasets created from TransLink GTFS data.

TransLink Spatial Data What: TransLink is the statutory public transit authority for the Metro Vancouver region. This GitHub repository is a collectio

Henry Tang 3 Jan 14, 2022
Code and coordinates for Matt's 2021 xmas tree

xmastree2021 Code and coordinates for Matt's 2021 xmas tree This repository contains the code and coordinates used for Matt's 2021 Christmas tree, as

Stand-up Maths 117 Jan 01, 2023
Replace MSFS2020's bing map to google map

English verison here 中文 免责声明 本教程提到的方法仅用于研究和学习用途。我不对使用、拓展该教程及方法所造成的任何法律责任和损失负责。 背景 微软模拟飞行2020的地景使用了Bing的卫星地图,然而卫星地图比较老旧,很多地区都是几年前的图设置直接是没有的。这种现象在全球不同地区

hesicong 272 Dec 24, 2022
gjf: A tool for fixing invalid GeoJSON objects

gjf: A tool for fixing invalid GeoJSON objects The goal of this tool is to make it as easy as possible to fix invalid GeoJSON objects through Python o

Yazeed Almuqwishi 91 Dec 06, 2022
A light-weight, versatile XYZ tile server, built with Flask and Rasterio :earth_africa:

Terracotta is a pure Python tile server that runs as a WSGI app on a dedicated webserver or as a serverless app on AWS Lambda. It is built on a modern

DHI GRAS 531 Dec 28, 2022
Manage your XYZ Hub or HERE Data Hub spaces from Python.

XYZ Spaces for Python Manage your XYZ Hub or HERE Data Hub spaces and Interactive Map Layer from Python. FEATURED IN: Online Python Machine Learning C

HERE Technologies 30 Oct 18, 2022
🌐 Local tile server for viewing geospatial raster files with ipyleaflet or folium

🌐 Local Tile Server for Geospatial Rasters Need to visualize a rather large (gigabytes) raster you have locally? This is for you. A Flask application

Bane Sullivan 192 Jan 04, 2023