This is a library for simulate probability theory problems specialy conditional probability

Related tags

Miscellaneouspprobs
Overview

Introduction

This is a library for simulating probability theory problems, especially conditional probability. It is also useful to create a custom single or joint distribution with a specific PMF or PDF to get a probability table and generate data based on a probability function.

How to install?

pip install pprobs

Probability Simulator

It simulates probability theory problems, especially conditional probability.

Example 1

We want to get some information by defining some events.

  • P(A) = 0.3
  • P(B) = 0.2
  • P(A^B) = 0.1
  • A and B are dependent
  • P(A+B) = ? , P(A|B) = ?
from pprobs.simulation import Simulator

space = Simulator()

space.add_event('A', 0.3)
space.add_event('B', 0.2)
space.add_event('A^B', 0.1)

prob_1 = space.get_prob('A+B') # A+B means union of A and B
prob_2 = space.get_prob('A|B')

print(prob_1, prob_2) # 0.4  0.5

Example 2

In a group of 100 sports car buyers, 40 bought alarm systems, 30 purchased bucket seats, and 20 purchased an alarm system and bucket seats. If a car buyer chosen at random bought an alarm system, what is the probability they also bought bucket seats?

By Statisticshowto

  • P(SEAT) = 0.3
  • P(ALARM) = 0.4
  • P(SEAT ^ ALARM) = 0.2
  • P(SEAT | ALARAM) = ?
from pprobs.simulation import Simulator

space = Simulator()

space.add_event('SEAT', 0.3).add_event('ALARM', 0.4) # We can also add events sequentially in a line (chaining) 
space.add_event('SEAT^ALARM', 0.2) # A^B means intersection of A & B

print(space.get_prob('SEAT|ALARM')) # 0.5

Example 3

Totaly 1% of people have a certain genetic defect.90% of tests for the gene detect the defect (true positives). 9.6% of the tests are false positives. If a person gets a positive test result, what are the odds they actually have the genetic defect?

By Statisticshowto

  • P(GEN_DEF) = 0.01
  • P(POSITIVE|GEN_DEF) = 0.9
  • P(POSITIVE|GEN_DEF!) = 0.096
  • P(GEN_DEF|POSITIVE) = ?
space = Simulator()

space.add_event('GEN_DEF', 0.01)
space.add_event('POSITIVE|GEN_DEF', 0.9) # A|B means A given B
space.add_event('POSITIVE|GEN_DEF!', 0.096) # A! means complement of A

print(space.get_prob('GEN_DEF|POSITIVE')) # 0.0865

Example 4

Bob has an important meeting tomorrow and he has to reach the office on time in the morning. His general mode of transport is by car and on a regular day (no car trouble) the probability that he will reach on time is 0.3. The probability that he might have car trouble is 0.2. If the car runs into trouble he will have to take a train and only 2 trains out of the available 10 trains will get him to the office on time.

By Hackerearth

  • P(ON_TIME|CAR_OK) = 0.3
  • P(ON_TIME|CAR_OK!) = 2/10 => Go by train
  • P(CAR_OK!) = 0.2
  • P(ON_TIME) = ?
space = Simulator()

space.add_event('ON_TIME|CAR_OK', 0.3)
space.add_event('ON_TIME|CAR_OK!', 2/10)
space.add_event('CAR_OK!', 0.2)

prob = space.get_prob('ON_TIME') # Probability of ON_TIME

print(prob) # 0.28

Distribution Simulator

It is useful to create a custom single or joint distribution with a specific PMF or PDF to get a probability table and generate data based on a probability function.

Example 1

Suppose that we have a discrete random variable with a specific PMF. We want to generate many data based on this variable. As you see in the second example 1 has the largest probability and duplicates more and 4 has the smallest probability and duplicates less.

from pprobs.distribution import Discrete

# First 
def pmf(x):
    return 1 / 6

dist = Discrete(pmf, [1, 2, 3, 4, 5, 6]) # The second is the sample space of our PMF

print(dist.generate(15)) # [4, 3, 1, 6, 5, 3, 5, 3, 5, 4, 2, 5, 6, 1, 6]


# Second
def pmf(x):
    return 1 / x

dist = Discrete(pmf, [1, 2, 3, 4])
print(dist.generate(15)) # [1, 2, 1, 1, 1, 4, 3, 1, 1, 3, 2, 4, 1, 2, 2]

Example 2

Suppose that we have a continuous random variable with a specific PDF.

from pprobs.distribution import Continuous

def pdf(x):
  if x > 1:
    return x / x ** 2
  return 0

dist = Continuous(pdf, [1, 6]) # The second is the sample interval of our PDF

print(dist.generate(15)) # [2.206896551724138, 4.103448275862069, ..., 5.655172413793104, 6.0]

Example 3

Suppose that we have a Continuous Joint variable with a specific PDF.

from pprobs.distribution import Joint

def pdf(x, y):
  if x > 1:
    return 1 / (x * y)
  return 0

dist = Joint(pdf, [1, 6], [3, 10]) # The second and third are the intervals of our PDF

print(dist.probability_table(force=20)) # if force gets more, many number will generate

Output:

X/Y x=3.0 X=3.7 ... X=10
X=1.0 0.000 0.000 ... 0.000
... ... ... ... ...
X=6.0 0.055 0.044 ... 0.016
print(dist.get_prob(3.5, 3.5)) # 0.081 is P(X=3.5, Y=3.5)
print(dist.get_prob([1, 6], 4)) # 0.041 is P(Y=4) because X includes its whole domain
print(dist.get_prob(2.1, [1, 4])) # 0.206 is P(X=2.1, Y in [1, 4])

Example 4

Suppose that we have a Discrete Joint variable with a specific PMF.

from pprobs.distribution import Joint

def pmf(x, y):
  if x > 1:
    return 1 / (x * y)
  return 0

dist = Joint(pmf, range(1, 6), range(6, 10)) # The second and third are the sample space of our PMF

print(dist.probability_table()) 

Output:

X/Y Y=6 Y=7 Y=8 Y=9
X=1 0.000000 0.000000 0.000000 0.000000
X=2 0.083333 0.071429 0.062500 0.055556
X=3 0.055556 0.047619 0.041667 0.037037
X=4 0.041667 0.035714 0.031250 0.027778
X=5 0.033333 0.028571 0.025000 0.022222
print(dist.get_prob(2, range(6, 10))) # 0.272 is P(X=2)
print(dist.get_prob(2, 6)) # 0.083 is P(X=2, Y=6)

Thank you if giving a star me on Github. https://github.com/mokar2001

Owner
Mohamadreza Kariminejad
I am interested in AI, Backend Development, and Mathematics.
Mohamadreza Kariminejad
Ronin - Create Fud Meterpreter Payload To Hack Windows 11

Ronin - Create Fud Meterpreter Payload To Hack Windows 11

Dj4w3d H4mm4di 6 May 09, 2022
Nick Craig-Wood's Website

Nick Craig-Wood's public website This directory tree is used to build all the different docs for Nick Craig-Wood's website. The content here is (c) Ni

Nick Craig-Wood 2 Sep 02, 2022
redun aims to be a more expressive and efficient workflow framework

redun yet another redundant workflow engine redun aims to be a more expressive and efficient workflow framework, built on top of the popular Python pr

insitro 372 Jan 04, 2023
Fast Base64 encoding/decoding in Python

Fast Base64 implementation This project is a wrapper on libbase64. It aims to provide a fast base64 implementation for base64 encoding/decoding. Insta

Matthieu Darbois 96 Dec 26, 2022
Fork of pathlib aiming to support the full stdlib Python API.

pathlib2 Fork of pathlib aiming to support the full stdlib Python API. The old pathlib module on bitbucket is in bugfix-only mode. The goal of pathlib

Jazzband 73 Dec 23, 2022
Run Python code right in your Telegram messages

Run Python code right in your Telegram messages Made with Telethon library, TGPy is a tool for evaluating expressions and Telegram API scripts. Instal

29 Nov 22, 2022
An electron application to check battery of bluetooth devices connected to linux devices.

bluetooth-battery-electron An electron application to check battery of bluetooth devices connected to linux devices. This project provides an electron

Vasu Sharma 15 Dec 03, 2022
A data driven app for bicycle hiring in London(UK)

bicycle_hiring_app_deployed A data driven app for bicycle hiring in London(UK). It predicts expected number of bicycle hire in London. It asks users t

Rajarshi Roy Raju 1 Dec 10, 2021
This code extracts line width of phonons from specular energy density (SED) calculated with LAMMPS.

This code extracts line width of phonons from specular energy density (SED) calculated with LAMMPS.

Masato Ohnishi 3 Jun 15, 2022
dotfiles - Cristian Valero Abundio

In this repository you can find various configurations to configure your Linux operating system, preferably ArchLinux and its derivatives.

Cristian Valero Abundio 1 Jan 09, 2022
A simple hash system.

PBH-Hash-System A simple hash system. Usage You could use it like this: from pbh import pbh print(pbh("Hey", True)) Output: 2feae2471698cfcdcbd6b98ca

Karim 3 Mar 24, 2022
A micro-service that can be extended to help in monitoring systems

A micro-service that can be extended to help in monitoring systems. Be extensible to be incorporated in any of the systems to facilitate timely interventions.

Peter Kagwe 1 Feb 06, 2022
A competition for forecasting electricity demand at the country-level using a standard backtesting framework

A competition for forecasting electricity demand at the country-level using a standard backtesting framework

5 Jul 12, 2022
Jogo em redes similar ao clássico pedra papel e tesoura

Batalha Tática Tecnologias de Redes de Computadores-A-N-JOGOS DIGITAIS Professor Fabio Henrique Cabrini Alunos: Eric Henrique de Oliveira Silva - RA 1

Eric Henrique de Oliveira Silva 1 Dec 01, 2021
The parser of a timetable of tennis matches for Flashscore website

FlashscoreParser The parser of a timetable of tennis matches for Flashscore website. The program collects the schedule of tennis matches for two days

Valendovsky 1 Jul 15, 2022
A GUI love Calculator which saves all the User Data in text file(sql based script will be uploaded soon). Interative GUI. Even For Admin Panel

Love-Calculator A GUI love Calculator which saves all the User Data in text file(sql based script will be uploaded soon). Interative GUI, even For Adm

Adithya Krishnan 1 Mar 22, 2022
Paintbot - Forward & Inverse Kinematics

PAINTBOT - FORWARD & INVERSE KINEMATICS: Overview: We built a simulation of a RRR robot shown in the figure below. The robot has 3 links and is connec

Alex Lin 1 Oct 21, 2021
🍏 Make Thinc faster on macOS by calling into Apple's native Accelerate library

🍏 Make Thinc faster on macOS by calling into Apple's native Accelerate library

Explosion 81 Nov 26, 2022
This is a practice on Airflow, which is building virtual env, installing Airflow and constructing data pipeline (DAGs)

airflow-test This is a practice on Airflow, which is Builing virtualbox env and setting Airflow on that env Installing Airflow using python virtual en

Jaeyoung 1 Nov 01, 2021
Integration of Hotwire's Turbo library with Flask.

turbo-flask Integration of Hotwire's Turbo library with Flask, to allow you to create applications that look and feel like single-page apps without us

Miguel Grinberg 240 Jan 06, 2023