Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

Related tags

Deep LearningSALOD
Overview

SALOD

Source code of our work: "Benchmarking Deep Models for Salient Object Detection".
In this works, we propose a new benchmark for SALient Object Detection (SALOD) methods.

We re-implement 14 methods using same settings, including input size, data loader and evaluation metrics (thanks to Metrics). Hyperparameters of optimizer are different because of various network structures and objective functions. We try our best to tune the optimizer for these models to achieve the best performance one-by-one. Some other networks are debugging now, it is welcome for your contributions on these networks to obtain better performance.

Properties

  1. A unify interface for new models. To develop a new network, you only need to 1) set configs; 2) define network; 3) define loss function. See methods/template.
  2. We build a new dataset by collecting several prevalent datasets in SOD task.
  3. Easy to adopt different backbones (Available backbones: ResNet-50, VGG-16, MobileNet-v2, EfficientNet-B0, GhostNet, Res2Net)
  4. Testing all networks on your own device. By input the name of network, you can test all available methods in our benchmark. Comparisons includes FPS, GFLOPs, model size and multiple effectiveness metrics.
  5. We implement a loss factory that you can change the loss functions using command line parameters.

Available Methods:

Methods Publish. Input Weight Optim. LR Epoch Paper Src Code
DHSNet CVPR2016 320^2 95M Adam 2e-5 30 openaccess Pytorch
NLDF CVPR2017 320^2 161M Adam 1e-5 30 openaccess Pytorch/TF
Amulet ICCV2017 320^2 312M Adam 1e-5 30 openaccess Pytorch
SRM ICCV2017 320^2 240M Adam 5e-5 30 openaccess Pytorch
PicaNet CVPR2018 320^2 464M SGD 1e-2 30 openaccess Pytorch
DSS TPAMI2019 320^2 525M Adam 2e-5 30 IEEE/ArXiv Pytorch
BASNet CVPR2019 320^2 374M Adam 1e-5 30 openaccess Pytorch
CPD CVPR2019 320^2 188M Adam 1e-5 30 openaccess Pytorch
PoolNet CVPR2019 320^2 267M Adam 5e-5 30 openaccess Pytorch
EGNet ICCV2019 320^2 437M Adam 5e-5 30 openaccess Pytorch
SCRN ICCV2019 320^2 100M SGD 1e-2 30 openaccess Pytorch
GCPA AAAI2020 320^2 263M SGD 1e-2 30 aaai.org Pytorch
ITSD CVPR2020 320^2 101M SGD 5e-3 30 openaccess Pytorch
MINet CVPR2020 320^2 635M SGD 1e-3 30 openaccess Pytorch
Tuning ----- ----- ------ ------ ----- ----- ----- -----
*PAGE CVPR2019 320^2 ------ ------ ----- ----- openaccess TF
*PFA CVPR2019 320^2 ------ ------ ----- ----- openaccess Pytorch
*F3Net AAAI2020 320^2 ------ ------ ----- ----- aaai.org Pytorch
*PFPN AAAI2020 320^2 ------ ------ ----- ----- aaai.org Pytorch
*LDF CVPR2020 320^2 ------ ------ ----- ----- openaccess Pytorch

Usage

# model_name: lower-cased method name. E.g. poolnet, egnet, gcpa, dhsnet or minet.
python3 train.py model_name --gpus=0

python3 test.py model_name --gpus=0 --weight=path_to_weight 

python3 test_fps.py model_name --gpus=0

# To evaluate generated maps:
python3 eval.py --pre_path=path_to_maps

Results

We report benchmark results here.
More results please refer to Reproduction, Few-shot and Generalization.

Notice: please contact us if you get better results.

VGG16-based:

Methods #Param. GFLOPs Tr. Time FPS max-F ave-F Fbw MAE SM EM Weight
DHSNet 15.4 52.5 7.5 69.8 .884 .815 .812 .049 .880 .893
Amulet 33.2 1362 12.5 35.1 .855 .790 .772 .061 .854 .876
NLDF 24.6 136 9.7 46.3 .886 .824 .828 .045 .881 .898
SRM 37.9 73.1 7.9 63.1 .857 .779 .769 .060 .859 .874
PicaNet 26.3 74.2 40.5* 8.8 .889 .819 .823 .046 .884 .899
DSS 62.2 99.4 11.3 30.3 .891 .827 .826 .046 .888 .899
BASNet 80.5 114.3 16.9 32.6 .906 .853 .869 .036 .899 .915
CPD 29.2 85.9 10.5 36.3 .886 .815 .792 .052 .885 .888
PoolNet 52.5 236.2 26.4 23.1 .902 .850 .852 .039 .898 .913
EGNet 101 178.8 19.2 16.3 .909 .853 .859 .037 .904 .914
SCRN 16.3 47.2 9.3 24.8 .896 .820 .822 .046 .891 .894
GCPA 42.8 197.1 17.5 29.3 .903 .836 .845 .041 .898 .907
ITSD 16.9 76.3 15.2* 30.6 .905 .820 .834 .045 .901 .896
MINet 47.8 162 21.8 23.4 .900 .839 .852 .039 .895 .909

ResNet50-based:

Methods #Param. GFLOPs Tr. Time FPS max-F ave-F Fbw MAE SM EM Weight
DHSNet 24.2 13.8 3.9 49.2 .909 .830 .848 .039 .905 .905
Amulet 79.8 1093.8 6.3 35.1 .895 .822 .835 .042 .894 .900
NLDF 41.1 115.1 9.2 30.5 .903 .837 .855 .038 .898 .910
SRM 61.2 20.2 5.5 34.3 .882 .803 .812 .047 .885 .891
PicaNet 106.1 36.9 18.5* 14.8 .904 .823 .843 .041 .902 .902
DSS 134.3 35.3 6.6 27.3 .894 .821 .826 .045 .893 .898
BASNet 95.5 47.2 12.2 32.8 .917 .861 .884 .032 .909 .921
CPD 47.9 14.7 7.7 22.7 .906 .842 .836 .040 .904 .908
PoolNet 68.3 66.9 10.2 33.9 .912 .843 .861 .036 .907 .912
EGNet 111.7 222.8 25.7 10.2 .917 .851 .867 .036 .912 .914
SCRN 25.2 12.5 5.5 19.3 .910 .838 .845 .040 .906 .905
GCPA 67.1 54.3 6.8 37.8 .916 .841 .866 .035 .912 .912
ITSD 25.7 19.6 5.7 29.4 .913 .825 .842 .042 .907 .899
MINet 162.4 87 11.7 23.5 .913 .851 .871 .034 .906 .917

Create New Model

To create a new model, you can copy the template folder and modify it as you want.

cp -r ./methods/template ./methods/new_name

More details please refer to python files in template floder.

Loss Factory

We supply a Loss Factory for an easier way to tune the loss functions. You can set --loss and --lw parameters to use it.

Here are some examples:

loss_dict = {'b': BCE, 's': SSIM, 'i': IOU, 'd': DICE, 'e': Edge, 'c': CTLoss}

python train.py ... --loss=bd
# loss = 1 * bce_loss + 1 * dice_loss

python train.py ... --loss=bs --lw=0.3,0.7
# loss = 0.3 * bce_loss + 0.7 * ssim_loss

python train.py ... --loss=bsid --lw=0.3,0.1,0.5,0.2
# loss = 0.3 * bce_loss + 0.1 * ssim_loss + 0.5 * iou_loss + 0.2 * dice_loss
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022