Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Related tags

Deep Learningtutorial
Overview

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Jupyter Book Badge

About the book

This is a web book written for a tutorial session of the 22nd International Society for Music Information Retrieval Conference, Nov 8-12, 2021, in an online format. The ISMIR conference is the world’s leading research forum on processing, searching, organising and accessing music-related data.

Motivation

Lower the barrier: As deep learning emerges, music classification research has entered a new phase, and many data-driven approaches have been proposed to solve the problem. However, researchers sometimes use jargon in various ways. Also, some implementation details and evaluation methods are ambiguously described in the papers, blocking access to the information without personal contact. These are tremendous obstacles when new researchers want to dive into this fascinating research area. Through this book, we would like to lower the barrier for newcomers and reduce miscommunication between researchers by sharing the secrets.

Cope with data issue: Another issue that we are facing under the deep learning era is the exhaustion of labeled data. Labeling musical attributes requires strong domain knowledge and a significant amount of time for listening; hence expensive. Because of this, deep learning researchers started actively utilizing large-scale unlabeled data. This book introduces the recent advances in semi- and self-supervised learning that enables music classification models to step further beyond supervised learning.

Narrow the gap: Music classification has been applied to solve real-world problems successfully. However, some important procedures and considerations for real-world applications are rarely discussed as research topics. In this book, based on the various industry experiences of the authors, we try our best to raise the awareness of these questions and provide answers and perspectives. We hope this helps academia and industries harmonize better together.

About the authors

Minz Won is a Ph.D candidate at the Music Technology Group (MTG) of Universitat Pompeu Fabra in Barcelona, Spain. His research focus is music representation learning. Along with his academic career, he has put his knowledge into practice with industry internships at Kakao Corp., Naver Corp., Pandora, Adobe, and he recently joined ByteDance as a research scientist. He contributed to the winning entry in the WWW 2018 Challenge: Learning to Recognize Musical Genre.

Janne Spijkervet graduated from the University of Amsterdam in 2021 with her Master's thesis titled "Contrastive Learning of Musical Representations". The paper with the same title was published in 2020 on self-supervised learning on raw audio in music tagging. She has started at ByteDance as a research scientist (2020 - present), developing generative models for music creation. She is also a songwriter and music producer, and explores the design and use of machine learning technology in her music.

Keunwoo Choi is a senior research scientist at ByteDance, developing machine learning products for music recommendation and discovery. He received a Ph.D degree from Queen Mary University of London (c4dm) in 2018. As a researcher, he also has been working at Spotify (2018 - 2020) and several other music companies as well as open-source projects such as Kapre, librosa, and torchaudio. He also writes some music.

Citing this book

@book{musicclassification:book,
	Author = {Minz Won, Janne Spijkervet, and Keunwoo Choi},
	Month = Nov.,
	Publisher = {https://music-classification.github.io/tutorial},
	Title = {Music Classification: Beyond Supervised Learning, Towards Real-world Applications},
	Year = 2021,
	Url = {https://music-classification.github.io/tutorial}
}
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022